File size: 31,697 Bytes
114594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
from sympy.polys.domains import ZZ, QQ, EX, RR
from sympy.polys.rings import ring
from sympy.polys.puiseux import puiseux_ring
from sympy.polys.ring_series import (_invert_monoms, rs_integrate,
    rs_trunc, rs_mul, rs_square, rs_pow, _has_constant_term, rs_hadamard_exp,
    rs_series_from_list, rs_exp, rs_log, rs_newton, rs_series_inversion,
    rs_compose_add, rs_asin, _atan, rs_atan, _atanh, rs_atanh, rs_asinh, rs_tan,
    rs_cot, rs_sin, rs_cos, rs_cos_sin, rs_sinh, rs_cosh, rs_cosh_sinh, rs_tanh,
    _tan1, rs_fun, rs_nth_root, rs_LambertW, rs_series_reversion, rs_is_puiseux,
    rs_series)
from sympy.testing.pytest import raises, slow
from sympy.core.symbol import symbols
from sympy.functions import (sin, cos, exp, tan, cot, sinh, cosh, atan, atanh,
    asinh, tanh, log, sqrt)
from sympy.core.numbers import Rational, pi
from sympy.core import expand, S

def is_close(a, b):
    tol = 10**(-10)
    assert abs(a - b) < tol


def test_ring_series1():
    R, x = ring('x', QQ)
    p = x**4 + 2*x**3 + 3*x + 4
    assert _invert_monoms(p) == 4*x**4 + 3*x**3 + 2*x + 1
    assert rs_hadamard_exp(p) == x**4/24 + x**3/3 + 3*x + 4
    R, x = ring('x', QQ)
    p = x**4 + 2*x**3 + 3*x + 4
    assert rs_integrate(p, x) == x**5/5 + x**4/2 + 3*x**2/2 + 4*x
    R, x, y = ring('x, y', QQ)
    p = x**2*y**2 + x + 1
    assert rs_integrate(p, x) == x**3*y**2/3 + x**2/2 + x
    assert rs_integrate(p, y) == x**2*y**3/3 + x*y + y


def test_trunc():
    R, x, y, t = ring('x, y, t', QQ)
    p = (y + t*x)**4
    p1 = rs_trunc(p, x, 3)
    assert p1 == y**4 + 4*y**3*t*x + 6*y**2*t**2*x**2


def test_mul_trunc():
    R, x, y, t = ring('x, y, t', QQ)
    p = 1 + t*x + t*y
    for i in range(2):
        p = rs_mul(p, p, t, 3)

    assert p == 6*x**2*t**2 + 12*x*y*t**2 + 6*y**2*t**2 + 4*x*t + 4*y*t + 1
    p = 1 + t*x + t*y + t**2*x*y
    p1 = rs_mul(p, p, t, 2)
    assert p1 == 1 + 2*t*x + 2*t*y
    R1, z = ring('z', QQ)
    raises(ValueError, lambda: rs_mul(p, z, x, 2))

    p1 = 2 + 2*x + 3*x**2
    p2 = 3 + x**2
    assert rs_mul(p1, p2, x, 4) == 2*x**3 + 11*x**2 + 6*x + 6


def test_square_trunc():
    R, x, y, t = ring('x, y, t', QQ)
    p = (1 + t*x + t*y)*2
    p1 = rs_mul(p, p, x, 3)
    p2 = rs_square(p, x, 3)
    assert p1 == p2
    p = 1 + x + x**2 + x**3
    assert rs_square(p, x, 4) == 4*x**3 + 3*x**2 + 2*x + 1


def test_pow_trunc():
    R, x, y, z = ring('x, y, z', QQ)
    p0 = y + x*z
    p = p0**16
    for xx in (x, y, z):
        p1 = rs_trunc(p, xx, 8)
        p2 = rs_pow(p0, 16, xx, 8)
        assert p1 == p2

    p = 1 + x
    p1 = rs_pow(p, 3, x, 2)
    assert p1 == 1 + 3*x
    assert rs_pow(p, 0, x, 2) == 1
    assert rs_pow(p, -2, x, 2) == 1 - 2*x
    p = x + y
    assert rs_pow(p, 3, y, 3) == x**3 + 3*x**2*y + 3*x*y**2
    assert rs_pow(1 + x, Rational(2, 3), x, 4) == 4*x**3/81 - x**2/9 + x*Rational(2, 3) + 1


def test_has_constant_term():
    R, x, y, z = ring('x, y, z', QQ)
    p = y + x*z
    assert _has_constant_term(p, x)
    p = x + x**4
    assert not _has_constant_term(p, x)
    p = 1 + x + x**4
    assert _has_constant_term(p, x)
    p = x + y + x*z


def test_inversion():
    R, x = ring('x', QQ)
    p = 2 + x + 2*x**2
    n = 5
    p1 = rs_series_inversion(p, x, n)
    assert rs_trunc(p*p1, x, n) == 1
    R, x, y = ring('x, y', QQ)
    p = 2 + x + 2*x**2 + y*x + x**2*y
    p1 = rs_series_inversion(p, x, n)
    assert rs_trunc(p*p1, x, n) == 1

    R, x, y = ring('x, y', QQ)
    p = 1 + x + y
    raises(NotImplementedError, lambda: rs_series_inversion(p, x, 4))
    p = R.zero
    raises(ZeroDivisionError, lambda: rs_series_inversion(p, x, 3))

    R, x = ring('x', ZZ)
    p = 2 + x
    raises(ValueError, lambda: rs_series_inversion(p, x, 3))


def test_series_reversion():
    R, x, y = ring('x, y', QQ)

    p = rs_tan(x, x, 10)
    assert rs_series_reversion(p, x, 8, y) == rs_atan(y, y, 8)

    p = rs_sin(x, x, 10)
    assert rs_series_reversion(p, x, 8, y) == 5*y**7/112 + 3*y**5/40 + \
        y**3/6 + y


def test_series_from_list():
    R, x = ring('x', QQ)
    p = 1 + 2*x + x**2 + 3*x**3
    c = [1, 2, 0, 4, 4]
    r = rs_series_from_list(p, c, x, 5)
    pc = R.from_list(list(reversed(c)))
    r1 = rs_trunc(pc.compose(x, p), x, 5)
    assert r == r1
    R, x, y = ring('x, y', QQ)
    c = [1, 3, 5, 7]
    p1 = rs_series_from_list(x + y, c, x, 3, concur=0)
    p2 = rs_trunc((1 + 3*(x+y) + 5*(x+y)**2 + 7*(x+y)**3), x, 3)
    assert p1 == p2

    R, x = ring('x', QQ)
    h = 25
    p = rs_exp(x, x, h) - 1
    p1 = rs_series_from_list(p, c, x, h)
    p2 = 0
    for i, cx in enumerate(c):
        p2 += cx*rs_pow(p, i, x, h)
    assert p1 == p2


def test_log():
    R, x = ring('x', QQ)
    p = 1 + x
    assert rs_log(p, x, 4) == x - x**2/2 + x**3/3
    p = 1 + x +2*x**2/3
    p1 = rs_log(p, x, 9)
    assert p1 == -17*x**8/648 + 13*x**7/189 - 11*x**6/162 - x**5/45 + \
      7*x**4/36 - x**3/3 + x**2/6 + x
    p2 = rs_series_inversion(p, x, 9)
    p3 = rs_log(p2, x, 9)
    assert p3 == -p1

    R, x, y = ring('x, y', QQ)
    p = 1 + x + 2*y*x**2
    p1 = rs_log(p, x, 6)
    assert p1 == (4*x**5*y**2 - 2*x**5*y - 2*x**4*y**2 + x**5/5 + 2*x**4*y -
                  x**4/4 - 2*x**3*y + x**3/3 + 2*x**2*y - x**2/2 + x)

    # Constant term in series
    a = symbols('a')
    R, x, y = ring('x, y', EX)
    assert rs_log(x + a, x, 5) == -EX(1/(4*a**4))*x**4 + EX(1/(3*a**3))*x**3 \
        - EX(1/(2*a**2))*x**2 + EX(1/a)*x + EX(log(a))
    assert rs_log(x + x**2*y + a, x, 4) == -EX(a**(-2))*x**3*y + \
        EX(1/(3*a**3))*x**3 + EX(1/a)*x**2*y - EX(1/(2*a**2))*x**2 + \
        EX(1/a)*x + EX(log(a))

    p = x + x**2 + 3
    assert rs_log(p, x, 10).compose(x, 5) == EX(log(3) + Rational(19281291595, 9920232))


def test_exp():
    R, x = ring('x', QQ)
    p = x + x**4
    for h in [10, 30]:
        q = rs_series_inversion(1 + p, x, h) - 1
        p1 = rs_exp(q, x, h)
        q1 = rs_log(p1, x, h)
        assert q1 == q
    p1 = rs_exp(p, x, 30)
    assert p1.coeff(x**29) == QQ(74274246775059676726972369, 353670479749588078181744640000)
    prec = 21
    p = rs_log(1 + x, x, prec)
    p1 = rs_exp(p, x, prec)
    assert p1 == x + 1

    # Constant term in series
    a = symbols('a')
    R, x, y = ring('x, y', QQ[exp(a), a])
    assert rs_exp(x + a, x, 5) == exp(a)*x**4/24 + exp(a)*x**3/6 + \
        exp(a)*x**2/2 + exp(a)*x + exp(a)
    assert rs_exp(x + x**2*y + a, x, 5) == exp(a)*x**4*y**2/2 + \
            exp(a)*x**4*y/2 + exp(a)*x**4/24 + exp(a)*x**3*y + \
            exp(a)*x**3/6 + exp(a)*x**2*y + exp(a)*x**2/2 + exp(a)*x + exp(a)

    R, x, y = ring('x, y', EX)
    assert rs_exp(x + a, x, 5) ==  EX(exp(a)/24)*x**4 + EX(exp(a)/6)*x**3 + \
        EX(exp(a)/2)*x**2 + EX(exp(a))*x + EX(exp(a))
    assert rs_exp(x + x**2*y + a, x, 5) == EX(exp(a)/2)*x**4*y**2 + \
        EX(exp(a)/2)*x**4*y + EX(exp(a)/24)*x**4 + EX(exp(a))*x**3*y + \
        EX(exp(a)/6)*x**3 + EX(exp(a))*x**2*y + EX(exp(a)/2)*x**2 + \
        EX(exp(a))*x + EX(exp(a))


def test_newton():
    R, x = ring('x', QQ)
    p = x**2 - 2
    r = rs_newton(p, x, 4)
    assert r == 8*x**4 + 4*x**2 + 2


def test_compose_add():
    R, x = ring('x', QQ)
    p1 = x**3 - 1
    p2 = x**2 - 2
    assert rs_compose_add(p1, p2) == x**6 - 6*x**4 - 2*x**3 + 12*x**2 - 12*x - 7


def test_fun():
    R, x, y = ring('x, y', QQ)
    p = x*y + x**2*y**3 + x**5*y
    assert rs_fun(p, rs_tan, x, 10) == rs_tan(p, x, 10)
    assert rs_fun(p, _tan1, x, 10) == _tan1(p, x, 10)


def test_nth_root():
    R, x, y = puiseux_ring('x, y', QQ)
    assert rs_nth_root(1 + x**2*y, 4, x, 10) == -77*x**8*y**4/2048 + \
        7*x**6*y**3/128 - 3*x**4*y**2/32 + x**2*y/4 + 1
    assert rs_nth_root(1 + x*y + x**2*y**3, 3, x, 5) == -x**4*y**6/9 + \
        5*x**4*y**5/27 - 10*x**4*y**4/243 - 2*x**3*y**4/9 + 5*x**3*y**3/81 + \
        x**2*y**3/3 - x**2*y**2/9 + x*y/3 + 1
    assert rs_nth_root(8*x, 3, x, 3) == 2*x**QQ(1, 3)
    assert rs_nth_root(8*x + x**2 + x**3, 3, x, 3) == x**QQ(4,3)/12 + 2*x**QQ(1,3)
    r = rs_nth_root(8*x + x**2*y + x**3, 3, x, 4)
    assert r == -x**QQ(7,3)*y**2/288 + x**QQ(7,3)/12 + x**QQ(4,3)*y/12 + 2*x**QQ(1,3)

    # Constant term in series
    a = symbols('a')
    R, x, y = puiseux_ring('x, y', EX)
    assert rs_nth_root(x + EX(a), 3, x, 4) == EX(5/(81*a**QQ(8, 3)))*x**3 - \
        EX(1/(9*a**QQ(5, 3)))*x**2 + EX(1/(3*a**QQ(2, 3)))*x + EX(a**QQ(1, 3))
    assert rs_nth_root(x**QQ(2, 3) + x**2*y + 5, 2, x, 3) == -EX(sqrt(5)/100)*\
        x**QQ(8, 3)*y - EX(sqrt(5)/16000)*x**QQ(8, 3) + EX(sqrt(5)/10)*x**2*y + \
        EX(sqrt(5)/2000)*x**2 - EX(sqrt(5)/200)*x**QQ(4, 3) + \
        EX(sqrt(5)/10)*x**QQ(2, 3) + EX(sqrt(5))


def test_atan():
    R, x, y = ring('x, y', QQ)
    assert rs_atan(x, x, 9) == -x**7/7 + x**5/5 - x**3/3 + x
    assert rs_atan(x*y + x**2*y**3, x, 9) == 2*x**8*y**11 - x**8*y**9 + \
        2*x**7*y**9 - x**7*y**7/7 - x**6*y**9/3 + x**6*y**7 - x**5*y**7 + \
        x**5*y**5/5 - x**4*y**5 - x**3*y**3/3 + x**2*y**3 + x*y

    # Constant term in series
    a = symbols('a')
    R, x, y = ring('x, y', EX)
    assert rs_atan(x + a, x, 5) == -EX((a**3 - a)/(a**8 + 4*a**6 + 6*a**4 + \
        4*a**2 + 1))*x**4 + EX((3*a**2 - 1)/(3*a**6 + 9*a**4 + \
        9*a**2 + 3))*x**3 - EX(a/(a**4 + 2*a**2 + 1))*x**2 + \
        EX(1/(a**2 + 1))*x + EX(atan(a))
    assert rs_atan(x + x**2*y + a, x, 4) == -EX(2*a/(a**4 + 2*a**2 + 1)) \
        *x**3*y + EX((3*a**2 - 1)/(3*a**6 + 9*a**4 + 9*a**2 + 3))*x**3 + \
        EX(1/(a**2 + 1))*x**2*y - EX(a/(a**4 + 2*a**2 + 1))*x**2 + EX(1/(a**2 \
        + 1))*x + EX(atan(a))

    # Test for _atan faster for small and univariate series
    R, x = ring('x', QQ)
    p = x**2 + 2*x
    assert _atan(p, x, 5) == rs_atan(p, x, 5)

    R, x = ring('x', EX)
    p = x**2 + 2*x
    assert _atan(p, x, 9) == rs_atan(p, x, 9)


def test_asin():
    R, x, y = ring('x, y', QQ)
    assert rs_asin(x + x*y, x, 5) == x**3*y**3/6 + x**3*y**2/2 + x**3*y/2 + \
        x**3/6 + x*y + x
    assert rs_asin(x*y + x**2*y**3, x, 6) == x**5*y**7/2 + 3*x**5*y**5/40 + \
        x**4*y**5/2 + x**3*y**3/6 + x**2*y**3 + x*y


def test_tan():
    R, x, y = ring('x, y', QQ)
    assert rs_tan(x, x, 9) == x + x**3/3 + QQ(2,15)*x**5 + QQ(17,315)*x**7
    assert rs_tan(x*y + x**2*y**3, x, 9) == 4*x**8*y**11/3 + 17*x**8*y**9/45 + \
        4*x**7*y**9/3 + 17*x**7*y**7/315 + x**6*y**9/3 + 2*x**6*y**7/3 + \
        x**5*y**7 + 2*x**5*y**5/15 + x**4*y**5 + x**3*y**3/3 + x**2*y**3 + x*y

    # Constant term in series
    a = symbols('a')
    R, x, y = ring('x, y', QQ[tan(a), a])
    assert rs_tan(x + a, x, 5) == (tan(a)**5 + 5*tan(a)**3/3 +
        2*tan(a)/3)*x**4 + (tan(a)**4 + 4*tan(a)**2/3 + Rational(1, 3))*x**3 + \
        (tan(a)**3 + tan(a))*x**2 + (tan(a)**2 + 1)*x + tan(a)
    assert rs_tan(x + x**2*y + a, x, 4) == (2*tan(a)**3 + 2*tan(a))*x**3*y + \
        (tan(a)**4 + Rational(4, 3)*tan(a)**2 + Rational(1, 3))*x**3 + (tan(a)**2 + 1)*x**2*y + \
        (tan(a)**3 + tan(a))*x**2 + (tan(a)**2 + 1)*x + tan(a)

    R, x, y = ring('x, y', EX)
    assert rs_tan(x + a, x, 5) == EX(tan(a)**5 + 5*tan(a)**3/3 +
        2*tan(a)/3)*x**4 + EX(tan(a)**4 + 4*tan(a)**2/3 + EX(1)/3)*x**3 + \
        EX(tan(a)**3 + tan(a))*x**2 + EX(tan(a)**2 + 1)*x + EX(tan(a))
    assert rs_tan(x + x**2*y + a, x, 4) == EX(2*tan(a)**3 +
        2*tan(a))*x**3*y + EX(tan(a)**4 + 4*tan(a)**2/3 + EX(1)/3)*x**3 + \
        EX(tan(a)**2 + 1)*x**2*y + EX(tan(a)**3 + tan(a))*x**2 + \
        EX(tan(a)**2 + 1)*x + EX(tan(a))

    p = x + x**2 + 5
    assert rs_atan(p, x, 10).compose(x, 10) == EX(atan(5) + S(67701870330562640) / \
        668083460499)


def test_cot():
    R, x, y = puiseux_ring('x, y', QQ)
    assert rs_cot(x**6 + x**7, x, 8) == x**(-6) - x**(-5) + x**(-4) - \
        x**(-3) + x**(-2) - x**(-1) + 1 - x + x**2 - x**3 + x**4 - x**5 + \
        2*x**6/3 - 4*x**7/3
    assert rs_cot(x + x**2*y, x, 5) == -x**4*y**5 - x**4*y/15 + x**3*y**4 - \
        x**3/45 - x**2*y**3 - x**2*y/3 + x*y**2 - x/3 - y + x**(-1)


def test_sin():
    R, x, y = ring('x, y', QQ)
    assert rs_sin(x, x, 9) == x - x**3/6 + x**5/120 - x**7/5040
    assert rs_sin(x*y + x**2*y**3, x, 9) == x**8*y**11/12 - \
        x**8*y**9/720 + x**7*y**9/12 - x**7*y**7/5040 - x**6*y**9/6 + \
        x**6*y**7/24 - x**5*y**7/2 + x**5*y**5/120 - x**4*y**5/2 - \
        x**3*y**3/6 + x**2*y**3 + x*y

    # Constant term in series
    a = symbols('a')
    R, x, y = ring('x, y', QQ[sin(a), cos(a), a])
    assert rs_sin(x + a, x, 5) == sin(a)*x**4/24 - cos(a)*x**3/6 - \
        sin(a)*x**2/2 + cos(a)*x + sin(a)
    assert rs_sin(x + x**2*y + a, x, 5) == -sin(a)*x**4*y**2/2 - \
        cos(a)*x**4*y/2 + sin(a)*x**4/24 - sin(a)*x**3*y - cos(a)*x**3/6 + \
        cos(a)*x**2*y - sin(a)*x**2/2 + cos(a)*x + sin(a)

    R, x, y = ring('x, y', EX)
    assert rs_sin(x + a, x, 5) == EX(sin(a)/24)*x**4 - EX(cos(a)/6)*x**3 - \
        EX(sin(a)/2)*x**2 + EX(cos(a))*x + EX(sin(a))
    assert rs_sin(x + x**2*y + a, x, 5) == -EX(sin(a)/2)*x**4*y**2 - \
        EX(cos(a)/2)*x**4*y + EX(sin(a)/24)*x**4 - EX(sin(a))*x**3*y - \
        EX(cos(a)/6)*x**3 + EX(cos(a))*x**2*y - EX(sin(a)/2)*x**2 + \
        EX(cos(a))*x + EX(sin(a))


def test_cos():
    R, x, y = ring('x, y', QQ)
    assert rs_cos(x, x, 9) == 1 - x**2/2 + x**4/24 - x**6/720 + x**8/40320
    assert rs_cos(x*y + x**2*y**3, x, 9) == x**8*y**12/24 - \
        x**8*y**10/48 + x**8*y**8/40320 + x**7*y**10/6 - \
        x**7*y**8/120 + x**6*y**8/4 - x**6*y**6/720 + x**5*y**6/6 - \
        x**4*y**6/2 + x**4*y**4/24 - x**3*y**4 - x**2*y**2/2 + 1

    # Constant term in series
    a = symbols('a')
    R, x, y = ring('x, y', QQ[sin(a), cos(a), a])
    assert rs_cos(x + a, x, 5) == cos(a)*x**4/24 + sin(a)*x**3/6 - \
        cos(a)*x**2/2 - sin(a)*x + cos(a)
    assert rs_cos(x + x**2*y + a, x, 5) == -cos(a)*x**4*y**2/2 + \
        sin(a)*x**4*y/2 + cos(a)*x**4/24 - cos(a)*x**3*y + sin(a)*x**3/6 - \
        sin(a)*x**2*y - cos(a)*x**2/2 - sin(a)*x + cos(a)

    R, x, y = ring('x, y', EX)
    assert rs_cos(x + a, x, 5) == EX(cos(a)/24)*x**4 + EX(sin(a)/6)*x**3 - \
        EX(cos(a)/2)*x**2 - EX(sin(a))*x + EX(cos(a))
    assert rs_cos(x + x**2*y + a, x, 5) == -EX(cos(a)/2)*x**4*y**2 + \
        EX(sin(a)/2)*x**4*y + EX(cos(a)/24)*x**4 - EX(cos(a))*x**3*y + \
        EX(sin(a)/6)*x**3 - EX(sin(a))*x**2*y - EX(cos(a)/2)*x**2 - \
        EX(sin(a))*x + EX(cos(a))


def test_cos_sin():
    R, x, y = ring('x, y', QQ)
    c, s = rs_cos_sin(x, x, 9)
    assert c == rs_cos(x, x, 9)
    assert s == rs_sin(x, x, 9)
    c, s = rs_cos_sin(x + x*y, x, 5)
    assert c == rs_cos(x + x*y, x, 5)
    assert s == rs_sin(x + x*y, x, 5)

    # constant term in series
    c, s = rs_cos_sin(1 + x + x**2, x, 5)
    assert c == rs_cos(1 + x + x**2, x, 5)
    assert s == rs_sin(1 + x + x**2, x, 5)

    a = symbols('a')
    R, x, y = ring('x, y', QQ[sin(a), cos(a), a])
    c, s = rs_cos_sin(x + a, x, 5)
    assert c == rs_cos(x + a, x, 5)
    assert s == rs_sin(x + a, x, 5)

    R, x, y = ring('x, y', EX)
    c, s = rs_cos_sin(x + a, x, 5)
    assert c == rs_cos(x + a, x, 5)
    assert s == rs_sin(x + a, x, 5)


def test_atanh():
    R, x, y = ring('x, y', QQ)
    assert rs_atanh(x, x, 9) == x + x**3/3 + x**5/5 + x**7/7
    assert rs_atanh(x*y + x**2*y**3, x, 9) == 2*x**8*y**11 + x**8*y**9 + \
        2*x**7*y**9 + x**7*y**7/7 + x**6*y**9/3 + x**6*y**7 + x**5*y**7 + \
        x**5*y**5/5 + x**4*y**5 + x**3*y**3/3 + x**2*y**3 + x*y

    # Constant term in series
    a = symbols('a')
    R, x, y = ring('x, y', EX)
    assert rs_atanh(x + a, x, 5) == EX((a**3 + a)/(a**8 - 4*a**6 + 6*a**4 - \
        4*a**2 + 1))*x**4 - EX((3*a**2 + 1)/(3*a**6 - 9*a**4 + \
        9*a**2 - 3))*x**3 + EX(a/(a**4 - 2*a**2 + 1))*x**2 - EX(1/(a**2 - \
        1))*x + EX(atanh(a))
    assert rs_atanh(x + x**2*y + a, x, 4) == EX(2*a/(a**4 - 2*a**2 + \
        1))*x**3*y - EX((3*a**2 + 1)/(3*a**6 - 9*a**4 + 9*a**2 - 3))*x**3 - \
        EX(1/(a**2 - 1))*x**2*y + EX(a/(a**4 - 2*a**2 + 1))*x**2 - \
        EX(1/(a**2 - 1))*x + EX(atanh(a))

    p = x + x**2 + 5
    assert rs_atanh(p, x, 10).compose(x, 10) == EX(Rational(-733442653682135, 5079158784) \
        + atanh(5))

    # Test for _atanh faster for small and univariate series
    R,x  = ring('x', QQ)
    p = x**2 + 2*x
    assert _atanh(p, x, 5) == rs_atanh(p, x, 5)

    R,x = ring('x', EX)
    p = x**2 + 2*x
    assert _atanh(p, x, 9) == rs_atanh(p, x, 9)


def test_asinh():
    R, x, y = ring('x, y', QQ)
    assert rs_asinh(x, x, 9) == -5/112*x**7 + 3/40*x**5 - 1/6*x**3 + x
    assert rs_asinh(x*y + x**2*y**3, x, 9) == 3/4*x**8*y**11 - 5/16*x**8*y**9 + \
        3/4*x**7*y**9 - 5/112*x**7*y**7 - 1/6*x**6*y**9 + 3/8*x**6*y**7 - 1/2*x \
        **5*y**7 + 3/40*x**5*y**5 - 1/2*x**4*y**5 - 1/6*x**3*y**3 + x**2*y**3 + x*y

    # Constant term in series
    a = symbols('a')
    R, x, y = ring('x, y', EX)
    assert rs_asinh(x + a, x, 3) == -EX(a/(2*a**2*sqrt(a**2 + 1) + 2*sqrt(a**2 + 1))) \
        *x**2 + EX(1/sqrt(a**2 + 1))*x + EX(asinh(a))
    assert rs_asinh(x + x**2*y + a, x, 3) == EX(1/sqrt(a**2 + 1))*x**2*y - EX(a/(2*a**2 \
        *sqrt(a**2 + 1) + 2*sqrt(a**2 + 1)))*x**2 + EX(1/sqrt(a**2 + 1))*x + EX(asinh(a))

    p = x + x ** 2 + 5
    assert rs_asinh(p, x, 10).compose(x, 10) == EX(asinh(5) + 4643789843094995*sqrt(26)/\
        205564141692)


def test_sinh():
    R, x, y = ring('x, y', QQ)
    assert rs_sinh(x, x, 9) == x + x**3/6 + x**5/120 + x**7/5040
    assert rs_sinh(x*y + x**2*y**3, x, 9) == x**8*y**11/12 + \
        x**8*y**9/720 + x**7*y**9/12 + x**7*y**7/5040 + x**6*y**9/6 + \
        x**6*y**7/24 + x**5*y**7/2 + x**5*y**5/120 + x**4*y**5/2 + \
        x**3*y**3/6 + x**2*y**3 + x*y

    # constant term in series
    a = symbols('a')
    R, x, y = ring('x, y', QQ[sinh(a), cosh(a), a])
    assert rs_sinh(x + a, x, 5) == 1/24*x**4*(sinh(a)) + 1/6*x**3*(cosh(a)) + 1/\
        2*x**2*(sinh(a)) + x*(cosh(a)) + (sinh(a))
    assert rs_sinh(x + x**2*y + a, x, 5) == 1/2*(sinh(a))*x**4*y**2 + 1/2*(cosh(a))\
        *x**4*y + 1/24*(sinh(a))*x**4 + (sinh(a))*x**3*y + 1/6*(cosh(a))*x**3 + \
        (cosh(a))*x**2*y + 1/2*(sinh(a))*x**2 + (cosh(a))*x + (sinh(a))

    R, x, y = ring('x, y', EX)
    assert rs_sinh(x + a, x, 5) == EX(sinh(a)/24)*x**4 + EX(cosh(a)/6)*x**3 + \
        EX(sinh(a)/2)*x**2 + EX(cosh(a))*x + EX(sinh(a))
    assert rs_sinh(x + x**2*y + a, x, 5) == EX(sinh(a)/2)*x**4*y**2 + EX(cosh(a)/\
        2)*x**4*y + EX(sinh(a)/24)*x**4 + EX(sinh(a))*x**3*y + EX(cosh(a)/6)*x**3 \
        + EX(cosh(a))*x**2*y + EX(sinh(a)/2)*x**2 + EX(cosh(a))*x + EX(sinh(a))


def test_cosh():
    R, x, y = ring('x, y', QQ)
    assert rs_cosh(x, x, 9) == 1 + x**2/2 + x**4/24 + x**6/720 + x**8/40320
    assert rs_cosh(x*y + x**2*y**3, x, 9) == x**8*y**12/24 + \
        x**8*y**10/48 + x**8*y**8/40320 + x**7*y**10/6 + \
        x**7*y**8/120 + x**6*y**8/4 + x**6*y**6/720 + x**5*y**6/6 + \
        x**4*y**6/2 + x**4*y**4/24 + x**3*y**4 + x**2*y**2/2 + 1

    # constant term in series
    a = symbols('a')
    R, x, y = ring('x, y', QQ[sinh(a), cosh(a), a])
    assert rs_cosh(x + a, x, 5) == 1/24*(cosh(a))*x**4 + 1/6*(sinh(a))*x**3 + \
        1/2*(cosh(a))*x**2 + (sinh(a))*x + (cosh(a))
    assert rs_cosh(x + x**2*y + a, x, 5) == 1/2*(cosh(a))*x**4*y**2 + 1/2*(sinh(a))\
        *x**4*y + 1/24*(cosh(a))*x**4 + (cosh(a))*x**3*y + 1/6*(sinh(a))*x**3 + \
        (sinh(a))*x**2*y + 1/2*(cosh(a))*x**2 + (sinh(a))*x + (cosh(a))
    R, x, y = ring('x, y', EX)
    assert rs_cosh(x + a, x, 5) == EX(cosh(a)/24)*x**4 + EX(sinh(a)/6)*x**3 + \
        EX(cosh(a)/2)*x**2 + EX(sinh(a))*x + EX(cosh(a))
    assert rs_cosh(x + x**2*y + a, x, 5) == EX(cosh(a)/2)*x**4*y**2 + EX(sinh(a)/\
        2)*x**4*y + EX(cosh(a)/24)*x**4 + EX(cosh(a))*x**3*y + EX(sinh(a)/6)*x**3 \
        + EX(sinh(a))*x**2*y + EX(cosh(a)/2)*x**2 + EX(sinh(a))*x + EX(cosh(a))


def test_cosh_sinh():
    R, x, y = ring('x, y', QQ)
    ch, sh = rs_cosh_sinh(x, x, 9)
    assert ch == rs_cosh(x, x, 9)
    assert sh == rs_sinh(x, x, 9)
    ch, sh = rs_cosh_sinh(x + x*y, x, 5)
    assert ch == rs_cosh(x + x*y, x, 5)
    assert sh == rs_sinh(x + x*y, x, 5)

    # constant term in series
    c, s = rs_cosh_sinh(1 + x + x**2, x, 5)
    assert c == rs_cosh(1 + x + x**2, x, 5)
    assert s == rs_sinh(1 + x + x**2, x, 5)

    a = symbols('a')
    R, x, y = ring('x, y', QQ[sinh(a), cosh(a), a])
    ch, sh = rs_cosh_sinh(x + a, x, 5)
    assert ch == rs_cosh(x + a, x, 5)
    assert sh == rs_sinh(x + a, x, 5)
    R, x, y = ring('x, y', EX)
    ch, sh = rs_cosh_sinh(x + a, x, 5)
    assert ch == rs_cosh(x + a, x, 5)
    assert sh == rs_sinh(x + a, x, 5)


def test_tanh():
    R, x, y = ring('x, y', QQ)
    assert rs_tanh(x, x, 9) == x - QQ(1,3)*x**3 + QQ(2,15)*x**5 - QQ(17,315)*x**7
    assert rs_tanh(x*y + x**2*y**3, x, 9) == 4*x**8*y**11/3 - \
        17*x**8*y**9/45 + 4*x**7*y**9/3 - 17*x**7*y**7/315 - x**6*y**9/3 + \
        2*x**6*y**7/3 - x**5*y**7 + 2*x**5*y**5/15 - x**4*y**5 - \
        x**3*y**3/3 + x**2*y**3 + x*y

    # Constant term in series
    a = symbols('a')
    R, x, y = ring('x, y', EX)
    assert rs_tanh(x + a, x, 5) == EX(tanh(a)**5 - 5*tanh(a)**3/3 +
        2*tanh(a)/3)*x**4 + EX(-tanh(a)**4 + 4*tanh(a)**2/3 - QQ(1, 3))*x**3 + \
        EX(tanh(a)**3 - tanh(a))*x**2 + EX(-tanh(a)**2 + 1)*x + EX(tanh(a))

    p = rs_tanh(x + x**2*y + a, x, 4)
    assert (p.compose(x, 10)).compose(y, 5) == EX(-1000*tanh(a)**4 + \
        10100*tanh(a)**3 + 2470*tanh(a)**2/3 - 10099*tanh(a) + QQ(530, 3))


def test_RR():
    rs_funcs = [rs_sin, rs_cos, rs_tan, rs_cot, rs_atan, rs_tanh]
    sympy_funcs = [sin, cos, tan, cot, atan, tanh]
    R, x, y = ring('x, y', RR)
    a = symbols('a')
    for rs_func, sympy_func in zip(rs_funcs, sympy_funcs):
        p = rs_func(2 + x, x, 5).compose(x, 5)
        q = sympy_func(2 + a).series(a, 0, 5).removeO()
        is_close(p.as_expr(), q.subs(a, 5).n())

    p = rs_nth_root(2 + x, 5, x, 5).compose(x, 5)
    q = ((2 + a)**QQ(1, 5)).series(a, 0, 5).removeO()
    is_close(p.as_expr(), q.subs(a, 5).n())


def test_is_regular():
    R, x, y = puiseux_ring('x, y', QQ)
    p = 1 + 2*x + x**2 + 3*x**3
    assert not rs_is_puiseux(p, x)

    p = x + x**QQ(1,5)*y
    assert rs_is_puiseux(p, x)
    assert not rs_is_puiseux(p, y)

    p = x + x**2*y**QQ(1,5)*y
    assert not rs_is_puiseux(p, x)


def test_puiseux():
    R, x, y = puiseux_ring('x, y', QQ)
    p = x**QQ(2,5) + x**QQ(2,3) + x

    r = rs_series_inversion(p, x, 1)
    r1 = -x**QQ(14,15) + x**QQ(4,5) - 3*x**QQ(11,15) + x**QQ(2,3) + \
        2*x**QQ(7,15) - x**QQ(2,5) - x**QQ(1,5) + x**QQ(2,15) - x**QQ(-2,15) \
        + x**QQ(-2,5)
    assert r == r1

    r = rs_nth_root(1 + p, 3, x, 1)
    assert r == -x**QQ(4,5)/9 + x**QQ(2,3)/3 + x**QQ(2,5)/3 + 1

    r = rs_log(1 + p, x, 1)
    assert r == -x**QQ(4,5)/2 + x**QQ(2,3) + x**QQ(2,5)

    r = rs_LambertW(p, x, 1)
    assert r == -x**QQ(4,5) + x**QQ(2,3) + x**QQ(2,5)

    p1 = x + x**QQ(1,5)*y
    r = rs_exp(p1, x, 1)
    assert r == x**QQ(4,5)*y**4/24 + x**QQ(3,5)*y**3/6 + x**QQ(2,5)*y**2/2 + \
        x**QQ(1,5)*y + 1

    r = rs_atan(p, x, 2)
    assert r ==  -x**QQ(9,5) - x**QQ(26,15) - x**QQ(22,15) - x**QQ(6,5)/3 + \
        x + x**QQ(2,3) + x**QQ(2,5)

    r = rs_atan(p1, x, 2)
    assert r ==  x**QQ(9,5)*y**9/9 + x**QQ(9,5)*y**4 - x**QQ(7,5)*y**7/7 - \
        x**QQ(7,5)*y**2 + x*y**5/5 + x - x**QQ(3,5)*y**3/3 + x**QQ(1,5)*y

    r = rs_tan(p, x, 2)
    assert r == x**QQ(2,5) + x**QQ(2,3) + x + QQ(1,3)*x**QQ(6,5) + x**QQ(22,15)\
        + x**QQ(26,15) + x**QQ(9,5)

    r = rs_sin(p, x, 2)
    assert r == x**QQ(2,5) + x**QQ(2,3) + x - QQ(1,6)*x**QQ(6,5) - QQ(1,2)*x**\
        QQ(22,15) - QQ(1,2)*x**QQ(26,15) - QQ(1,2)*x**QQ(9,5)

    r = rs_cos(p, x, 2)
    assert r == 1 - QQ(1,2)*x**QQ(4,5) - x**QQ(16,15) - QQ(1,2)*x**QQ(4,3) - \
        x**QQ(7,5) + QQ(1,24)*x**QQ(8,5) - x**QQ(5,3) + QQ(1,6)*x**QQ(28,15)

    r = rs_asin(p, x, 2)
    assert r == x**QQ(9,5)/2 + x**QQ(26,15)/2 + x**QQ(22,15)/2 + \
        x**QQ(6,5)/6 + x + x**QQ(2,3) + x**QQ(2,5)

    r = rs_cot(p, x, 1)
    assert r == -x**QQ(14,15) + x**QQ(4,5) - 3*x**QQ(11,15) + \
        2*x**QQ(2,3)/3 + 2*x**QQ(7,15) - 4*x**QQ(2,5)/3 - x**QQ(1,5) + \
        x**QQ(2,15) - x**QQ(-2,15) + x**QQ(-2,5)

    r = rs_cos_sin(p, x, 2)
    assert r[0] == x**QQ(28,15)/6 - x**QQ(5,3) + x**QQ(8,5)/24 - x**QQ(7,5) - \
        x**QQ(4,3)/2 - x**QQ(16,15) - x**QQ(4,5)/2 + 1
    assert r[1] == -x**QQ(9,5)/2 - x**QQ(26,15)/2 - x**QQ(22,15)/2 - \
        x**QQ(6,5)/6 + x + x**QQ(2,3) + x**QQ(2,5)

    r = rs_atanh(p, x, 2)
    assert r == x**QQ(9,5) + x**QQ(26,15) + x**QQ(22,15) + x**QQ(6,5)/3 + x + \
        x**QQ(2,3) + x**QQ(2,5)

    r = rs_asinh(p, x, 2)
    assert r == x**QQ(2,5) + x**QQ(2,3) + x - QQ(1,6)*x**QQ(6,5) - QQ(1,2)*x**\
        QQ(22,15) - QQ(1,2)*x**QQ(26,15) - QQ(1,2)*x**QQ(9,5)

    r = rs_cosh(p, x, 2)
    assert r == x**QQ(28,15)/6 + x**QQ(5,3) + x**QQ(8,5)/24 + x**QQ(7,5) + \
        x**QQ(4,3)/2 + x**QQ(16,15) + x**QQ(4,5)/2 + 1

    r = rs_sinh(p, x, 2)
    assert r == x**QQ(9,5)/2 + x**QQ(26,15)/2 + x**QQ(22,15)/2 + \
        x**QQ(6,5)/6 + x + x**QQ(2,3) + x**QQ(2,5)

    r = rs_cosh_sinh(p, x, 2)
    assert r[0] == x**QQ(28,15)/6 + x**QQ(5,3) + x**QQ(8,5)/24 + x**QQ(7,5) + \
        x**QQ(4,3)/2 + x**QQ(16,15) + x**QQ(4,5)/2 + 1
    assert r[1] == x**QQ(9,5)/2 + x**QQ(26,15)/2 + x**QQ(22,15)/2 + \
        x**QQ(6,5)/6 + x + x**QQ(2,3) + x**QQ(2,5)

    r = rs_tanh(p, x, 2)
    assert r == -x**QQ(9,5) - x**QQ(26,15) - x**QQ(22,15) - x**QQ(6,5)/3 + \
        x + x**QQ(2,3) + x**QQ(2,5)


def test_puiseux_algebraic(): # https://github.com/sympy/sympy/issues/24395

    K = QQ.algebraic_field(sqrt(2))
    sqrt2 = K.from_sympy(sqrt(2))
    x, y = symbols('x, y')
    R, xr, yr = puiseux_ring([x, y], K)
    p = (1+sqrt2)*xr**QQ(1,2) + (1-sqrt2)*yr**QQ(2,3)

    assert p.to_dict() == {(QQ(1,2),QQ(0)):1+sqrt2, (QQ(0),QQ(2,3)):1-sqrt2}
    assert p.as_expr() == (1 + sqrt(2))*x**(S(1)/2) + (1 - sqrt(2))*y**(S(2)/3)


def test1():
    R, x = puiseux_ring('x', QQ)
    r = rs_sin(x, x, 15)*x**(-5)
    assert r == x**8/6227020800 - x**6/39916800 + x**4/362880 - x**2/5040 + \
        QQ(1,120) - x**-2/6 + x**-4

    p = rs_sin(x, x, 10)
    r = rs_nth_root(p, 2, x, 10)
    assert  r == -67*x**QQ(17,2)/29030400 - x**QQ(13,2)/24192 + \
        x**QQ(9,2)/1440 - x**QQ(5,2)/12 + x**QQ(1,2)

    p = rs_sin(x, x, 10)
    r = rs_nth_root(p, 7, x, 10)
    r = rs_pow(r, 5, x, 10)
    assert r == -97*x**QQ(61,7)/124467840 - x**QQ(47,7)/16464 + \
        11*x**QQ(33,7)/3528 - 5*x**QQ(19,7)/42 + x**QQ(5,7)

    r = rs_exp(x**QQ(1,2), x, 10)
    assert r == x**QQ(19,2)/121645100408832000 + x**9/6402373705728000 + \
        x**QQ(17,2)/355687428096000 + x**8/20922789888000 + \
        x**QQ(15,2)/1307674368000 + x**7/87178291200 + \
        x**QQ(13,2)/6227020800 + x**6/479001600 + x**QQ(11,2)/39916800 + \
        x**5/3628800 + x**QQ(9,2)/362880 + x**4/40320 + x**QQ(7,2)/5040 + \
        x**3/720 + x**QQ(5,2)/120 + x**2/24 + x**QQ(3,2)/6 + x/2 + \
        x**QQ(1,2) + 1


def test_puiseux2():
    R, y = ring('y', QQ)
    S, x = puiseux_ring('x', R.to_domain())

    p = x + x**QQ(1,5)*y
    r = rs_atan(p, x, 3)
    assert r == (y**13/13 + y**8 + 2*y**3)*x**QQ(13,5) - (y**11/11 + y**6 +
        y)*x**QQ(11,5) + (y**9/9 + y**4)*x**QQ(9,5) - (y**7/7 +
        y**2)*x**QQ(7,5) + (y**5/5 + 1)*x - y**3*x**QQ(3,5)/3 + y*x**QQ(1,5)


@slow
def test_rs_series():
    x, a, b, c = symbols('x, a, b, c')

    assert rs_series(a, a, 5).as_expr() == a
    assert rs_series(sin(a), a, 5).as_expr() == (sin(a).series(a, 0,
        5)).removeO()
    assert rs_series(sin(a) + cos(a), a, 5).as_expr() == ((sin(a) +
        cos(a)).series(a, 0, 5)).removeO()
    assert rs_series(sin(a)*cos(a), a, 5).as_expr() == ((sin(a)*
        cos(a)).series(a, 0, 5)).removeO()

    p = (sin(a) - a)*(cos(a**2) + a**4/2)
    assert expand(rs_series(p, a, 10).as_expr()) == expand(p.series(a, 0,
        10).removeO())

    p = sin(a**2/2 + a/3) + cos(a/5)*sin(a/2)**3
    assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0,
        5).removeO())

    p = sin(x**2 + a)*(cos(x**3 - 1) - a - a**2)
    assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0,
        5).removeO())

    p = sin(a**2 - a/3 + 2)**5*exp(a**3 - a/2)
    assert expand(rs_series(p, a, 10).as_expr()) == expand(p.series(a, 0,
        10).removeO())

    p = sin(a + b + c)
    assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0,
        5).removeO())

    p = tan(sin(a**2 + 4) + b + c)
    assert expand(rs_series(p, a, 6).as_expr()) == expand(p.series(a, 0,
        6).removeO())

    p = a**QQ(2,5) + a**QQ(2,3) + a

    r = rs_series(tan(p), a, 2)
    assert r.as_expr() == a**QQ(9,5) + a**QQ(26,15) + a**QQ(22,15) + a**QQ(6,5)/3 + \
        a + a**QQ(2,3) + a**QQ(2,5)

    r = rs_series(exp(p), a, 1)
    assert r.as_expr() == a**QQ(4,5)/2 + a**QQ(2,3) + a**QQ(2,5) + 1

    r = rs_series(sin(p), a, 2)
    assert r.as_expr() == -a**QQ(9,5)/2 - a**QQ(26,15)/2 - a**QQ(22,15)/2 - \
        a**QQ(6,5)/6 + a + a**QQ(2,3) + a**QQ(2,5)

    r = rs_series(cos(p), a, 2)
    assert r.as_expr() == a**QQ(28,15)/6 - a**QQ(5,3) + a**QQ(8,5)/24 - a**QQ(7,5) - \
        a**QQ(4,3)/2 - a**QQ(16,15) - a**QQ(4,5)/2 + 1

    assert rs_series(sin(a)/7, a, 5).as_expr() == (sin(a)/7).series(a, 0,
            5).removeO()


def test_rs_series_ConstantInExpr():
    x, a = symbols('x a')
    assert rs_series(log(1 + x), x, 5).as_expr() == -x**4/4 + x**3/3 - \
            x**2/2 + x
    assert rs_series(log(1 + 4*x), x, 5).as_expr() == -64*x**4 + 64*x**3/3 - \
            8*x**2 + 4*x
    assert rs_series(log(1 + x + x**2), x, 10).as_expr() == -2*x**9/9 + \
            x**8/8 + x**7/7 - x**6/3 + x**5/5 + x**4/4 - 2*x**3/3 + x**2/2 + x
    assert rs_series(log(1 + x*a**2), x, 7).as_expr() == -x**6*a**12/6 + \
            x**5*a**10/5 - x**4*a**8/4 + x**3*a**6/3 - x**2*a**4/2 + x*a**2

    assert rs_series(atan(1 + x), x, 9).as_expr() == -x**7/112 + x**6/48 - x**5/40 \
            + x**3/12 - x**2/4 + x/2 + pi/4
    assert rs_series(atan(1 + x + x**2),x, 9).as_expr() == -15*x**7/112 - x**6/48 + \
            9*x**5/40 - 5*x**3/12 + x**2/4 + x/2 + pi/4
    assert rs_series(atan(1 + x * a), x, 9).as_expr() == -a**7*x**7/112 + a**6*x**6/48 \
            - a**5*x**5/40 + a**3*x**3/12 - a**2*x**2/4 + a*x/2 + pi/4

    assert rs_series(tanh(1 + x), x, 5).as_expr() == -5*x**4*tanh(1)**3/3 + x**4* \
            tanh(1)**5 + 2*x**4*tanh(1)/3 - x**3*tanh(1)**4 - x**3/3 + 4*x**3*tanh(1) \
           **2/3 - x**2*tanh(1) + x**2*tanh(1)**3 - x*tanh(1)**2 + x + tanh(1)
    assert rs_series(tanh(1 + x * a), x, 3).as_expr() == -a**2*x**2*tanh(1) + a**2*x** \
            2*tanh(1)**3 - a*x*tanh(1)**2 + a*x + tanh(1)

    assert rs_series(sinh(1 + x), x, 5).as_expr() == x**4*sinh(1)/24 + x**3*cosh(1)/6 + \
            x**2*sinh(1)/2 + x*cosh(1) + sinh(1)
    assert rs_series(sinh(1 + x * a), x, 5).as_expr() == a**4*x**4*sinh(1)/24 + \
            a**3*x**3*cosh(1)/6 + a**2*x**2*sinh(1)/2 + a*x*cosh(1) + sinh(1)

    assert rs_series(cosh(1 + x), x, 5).as_expr() == x**4*cosh(1)/24 + x**3*sinh(1)/6 + \
            x**2*cosh(1)/2 + x*sinh(1) + cosh(1)
    assert rs_series(cosh(1 + x * a), x, 5).as_expr() == a**4*x**4*cosh(1)/24 + \
            a**3*x**3*sinh(1)/6 + a**2*x**2*cosh(1)/2 + a*x*sinh(1) + cosh(1)


def test_issue():
    # https://github.com/sympy/sympy/issues/10191
    # https://github.com/sympy/sympy/issues/19543

    a, b = symbols('a b')
    assert rs_series(sin(a**QQ(3,7))*exp(a + b**QQ(6,7)), a,2).as_expr() == \
        a**QQ(10,7)*exp(b**QQ(6,7)) - a**QQ(9,7)*exp(b**QQ(6,7))/6 + a**QQ(3,7)*exp(b**QQ(6,7))