File size: 17,901 Bytes
114594c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
from sympy.core.add import Add
from sympy.core.function import (Function, expand)
from sympy.core.numbers import (I, Rational, nan, oo, pi)
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.complexes import (conjugate, transpose)
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.integrals.integrals import Integral
from sympy.series.order import O, Order
from sympy.core.expr import unchanged
from sympy.testing.pytest import raises
from sympy.abc import w, x, y, z
from sympy.testing.pytest import XFAIL


def test_caching_bug():
    #needs to be a first test, so that all caches are clean
    #cache it
    O(w)
    #and test that this won't raise an exception
    O(w**(-1/x/log(3)*log(5)), w)


def test_free_symbols():
    assert Order(1).free_symbols == set()
    assert Order(x).free_symbols == {x}
    assert Order(1, x).free_symbols == {x}
    assert Order(x*y).free_symbols == {x, y}
    assert Order(x, x, y).free_symbols == {x, y}


def test_simple_1():
    o = Rational(0)
    assert Order(2*x) == Order(x)
    assert Order(x)*3 == Order(x)
    assert -28*Order(x) == Order(x)
    assert Order(Order(x)) == Order(x)
    assert Order(Order(x), y) == Order(Order(x), x, y)
    assert Order(-23) == Order(1)
    assert Order(exp(x)) == Order(1, x)
    assert Order(exp(1/x)).expr == exp(1/x)
    assert Order(x*exp(1/x)).expr == x*exp(1/x)
    assert Order(x**(o/3)).expr == x**(o/3)
    assert Order(x**(o*Rational(5, 3))).expr == x**(o*Rational(5, 3))
    assert Order(x**2 + x + y, x) == O(1, x)
    assert Order(x**2 + x + y, y) == O(1, y)
    raises(ValueError, lambda: Order(exp(x), x, x))
    raises(TypeError, lambda: Order(x, 2 - x))


def test_simple_2():
    assert Order(2*x)*x == Order(x**2)
    assert Order(2*x)/x == Order(1, x)
    assert Order(2*x)*x*exp(1/x) == Order(x**2*exp(1/x))
    assert (Order(2*x)*x*exp(1/x)/log(x)**3).expr == x**2*exp(1/x)*log(x)**-3


def test_simple_3():
    assert Order(x) + x == Order(x)
    assert Order(x) + 2 == 2 + Order(x)
    assert Order(x) + x**2 == Order(x)
    assert Order(x) + 1/x == 1/x + Order(x)
    assert Order(1/x) + 1/x**2 == 1/x**2 + Order(1/x)
    assert Order(x) + exp(1/x) == Order(x) + exp(1/x)


def test_simple_4():
    assert Order(x)**2 == Order(x**2)


def test_simple_5():
    assert Order(x) + Order(x**2) == Order(x)
    assert Order(x) + Order(x**-2) == Order(x**-2)
    assert Order(x) + Order(1/x) == Order(1/x)


def test_simple_6():
    assert Order(x) - Order(x) == Order(x)
    assert Order(x) + Order(1) == Order(1)
    assert Order(x) + Order(x**2) == Order(x)
    assert Order(1/x) + Order(1) == Order(1/x)
    assert Order(x) + Order(exp(1/x)) == Order(exp(1/x))
    assert Order(x**3) + Order(exp(2/x)) == Order(exp(2/x))
    assert Order(x**-3) + Order(exp(2/x)) == Order(exp(2/x))


def test_simple_7():
    assert 1 + O(1) == O(1)
    assert 2 + O(1) == O(1)
    assert x + O(1) == O(1)
    assert 1/x + O(1) == 1/x + O(1)


def test_simple_8():
    assert O(sqrt(-x)) == O(sqrt(x))
    assert O(x**2*sqrt(x)) == O(x**Rational(5, 2))
    assert O(x**3*sqrt(-(-x)**3)) == O(x**Rational(9, 2))
    assert O(x**Rational(3, 2)*sqrt((-x)**3)) == O(x**3)
    assert O(x*(-2*x)**(I/2)) == O(x*(-x)**(I/2))


def test_as_expr_variables():
    assert Order(x).as_expr_variables(None) == (x, ((x, 0),))
    assert Order(x).as_expr_variables(((x, 0),)) == (x, ((x, 0),))
    assert Order(y).as_expr_variables(((x, 0),)) == (y, ((x, 0), (y, 0)))
    assert Order(y).as_expr_variables(((x, 0), (y, 0))) == (y, ((x, 0), (y, 0)))


def test_contains_0():
    assert Order(1, x).contains(Order(1, x))
    assert Order(1, x).contains(Order(1))
    assert Order(1).contains(Order(1, x)) is False


def test_contains_1():
    assert Order(x).contains(Order(x))
    assert Order(x).contains(Order(x**2))
    assert not Order(x**2).contains(Order(x))
    assert not Order(x).contains(Order(1/x))
    assert not Order(1/x).contains(Order(exp(1/x)))
    assert not Order(x).contains(Order(exp(1/x)))
    assert Order(1/x).contains(Order(x))
    assert Order(exp(1/x)).contains(Order(x))
    assert Order(exp(1/x)).contains(Order(1/x))
    assert Order(exp(1/x)).contains(Order(exp(1/x)))
    assert Order(exp(2/x)).contains(Order(exp(1/x)))
    assert not Order(exp(1/x)).contains(Order(exp(2/x)))


def test_contains_2():
    assert Order(x).contains(Order(y)) is None
    assert Order(x).contains(Order(y*x))
    assert Order(y*x).contains(Order(x))
    assert Order(y).contains(Order(x*y))
    assert Order(x).contains(Order(y**2*x))


def test_contains_3():
    assert Order(x*y**2).contains(Order(x**2*y)) is None
    assert Order(x**2*y).contains(Order(x*y**2)) is None


def test_contains_4():
    assert Order(sin(1/x**2)).contains(Order(cos(1/x**2))) is True
    assert Order(cos(1/x**2)).contains(Order(sin(1/x**2))) is True


def test_contains():
    assert Order(1, x) not in Order(1)
    assert Order(1) in Order(1, x)
    raises(TypeError, lambda: Order(x*y**2) in Order(x**2*y))


def test_add_1():
    assert Order(x + x) == Order(x)
    assert Order(3*x - 2*x**2) == Order(x)
    assert Order(1 + x) == Order(1, x)
    assert Order(1 + 1/x) == Order(1/x)
    # TODO : A better output for Order(log(x) + 1/log(x))
    # could be Order(log(x)). Currently Order for expressions
    # where all arguments would involve a log term would fall
    # in this category and outputs for these should be improved.
    assert Order(log(x) + 1/log(x)) == Order((log(x)**2 + 1)/log(x))
    assert Order(exp(1/x) + x) == Order(exp(1/x))
    assert Order(exp(1/x) + 1/x**20) == Order(exp(1/x))


def test_ln_args():
    assert O(log(x)) + O(log(2*x)) == O(log(x))
    assert O(log(x)) + O(log(x**3)) == O(log(x))
    assert O(log(x*y)) + O(log(x) + log(y)) == O(log(x) + log(y), x, y)


def test_multivar_0():
    assert Order(x*y).expr == x*y
    assert Order(x*y**2).expr == x*y**2
    assert Order(x*y, x).expr == x
    assert Order(x*y**2, y).expr == y**2
    assert Order(x*y*z).expr == x*y*z
    assert Order(x/y).expr == x/y
    assert Order(x*exp(1/y)).expr == x*exp(1/y)
    assert Order(exp(x)*exp(1/y)).expr == exp(x)*exp(1/y)


def test_multivar_0a():
    assert Order(exp(1/x)*exp(1/y)).expr == exp(1/x)*exp(1/y)


def test_multivar_1():
    assert Order(x + y).expr == x + y
    assert Order(x + 2*y).expr == x + y
    assert (Order(x + y) + x).expr == (x + y)
    assert (Order(x + y) + x**2) == Order(x + y)
    assert (Order(x + y) + 1/x) == 1/x + Order(x + y)
    assert Order(x**2 + y*x).expr == x**2 + y*x


def test_multivar_2():
    assert Order(x**2*y + y**2*x, x, y).expr == x**2*y + y**2*x


def test_multivar_mul_1():
    assert Order(x + y)*x == Order(x**2 + y*x, x, y)


def test_multivar_3():
    assert (Order(x) + Order(y)).args in [
        (Order(x), Order(y)),
        (Order(y), Order(x))]
    assert Order(x) + Order(y) + Order(x + y) == Order(x + y)
    assert (Order(x**2*y) + Order(y**2*x)).args in [
        (Order(x*y**2), Order(y*x**2)),
        (Order(y*x**2), Order(x*y**2))]
    assert (Order(x**2*y) + Order(y*x)) == Order(x*y)


def test_issue_3468():
    y = Symbol('y', negative=True)
    z = Symbol('z', complex=True)

    # check that Order does not modify assumptions about symbols
    Order(x)
    Order(y)
    Order(z)

    assert x.is_positive is None
    assert y.is_positive is False
    assert z.is_positive is None


def test_leading_order():
    assert (x + 1 + 1/x**5).extract_leading_order(x) == ((1/x**5, O(1/x**5)),)
    assert (1 + 1/x).extract_leading_order(x) == ((1/x, O(1/x)),)
    assert (1 + x).extract_leading_order(x) == ((1, O(1, x)),)
    assert (1 + x**2).extract_leading_order(x) == ((1, O(1, x)),)
    assert (2 + x**2).extract_leading_order(x) == ((2, O(1, x)),)
    assert (x + x**2).extract_leading_order(x) == ((x, O(x)),)


def test_leading_order2():
    assert set((2 + pi + x**2).extract_leading_order(x)) == {(pi, O(1, x)),
            (S(2), O(1, x))}
    assert set((2*x + pi*x + x**2).extract_leading_order(x)) == {(2*x, O(x)),
            (x*pi, O(x))}


def test_order_leadterm():
    assert O(x**2)._eval_as_leading_term(x, None, 1) == O(x**2)


def test_order_symbols():
    e = x*y*sin(x)*Integral(x, (x, 1, 2))
    assert O(e) == O(x**2*y, x, y)
    assert O(e, x) == O(x**2)


def test_nan():
    assert O(nan) is nan
    assert not O(x).contains(nan)


def test_O1():
    assert O(1, x) * x == O(x)
    assert O(1, y) * x == O(1, y)


def test_getn():
    # other lines are tested incidentally by the suite
    assert O(x).getn() == 1
    assert O(x/log(x)).getn() == 1
    assert O(x**2/log(x)**2).getn() == 2
    assert O(x*log(x)).getn() == 1
    raises(NotImplementedError, lambda: (O(x) + O(y)).getn())


def test_diff():
    assert O(x**2).diff(x) == O(x)


def test_getO():
    assert (x).getO() is None
    assert (x).removeO() == x
    assert (O(x)).getO() == O(x)
    assert (O(x)).removeO() == 0
    assert (z + O(x) + O(y)).getO() == O(x) + O(y)
    assert (z + O(x) + O(y)).removeO() == z
    raises(NotImplementedError, lambda: (O(x) + O(y)).getn())


def test_leading_term():
    from sympy.functions.special.gamma_functions import digamma
    assert O(1/digamma(1/x)) == O(1/log(x))


def test_eval():
    assert Order(x).subs(Order(x), 1) == 1
    assert Order(x).subs(x, y) == Order(y)
    assert Order(x).subs(y, x) == Order(x)
    assert Order(x).subs(x, x + y) == Order(x + y, (x, -y))
    assert (O(1)**x).is_Pow


def test_issue_4279():
    a, b = symbols('a b')
    assert O(a, a, b) + O(1, a, b) == O(1, a, b)
    assert O(b, a, b) + O(1, a, b) == O(1, a, b)
    assert O(a + b, a, b) + O(1, a, b) == O(1, a, b)
    assert O(1, a, b) + O(a, a, b) == O(1, a, b)
    assert O(1, a, b) + O(b, a, b) == O(1, a, b)
    assert O(1, a, b) + O(a + b, a, b) == O(1, a, b)


def test_issue_4855():
    assert 1/O(1) != O(1)
    assert 1/O(x) != O(1/x)
    assert 1/O(x, (x, oo)) != O(1/x, (x, oo))

    f = Function('f')
    assert 1/O(f(x)) != O(1/x)


def test_order_conjugate_transpose():
    x = Symbol('x', real=True)
    y = Symbol('y', imaginary=True)
    assert conjugate(Order(x)) == Order(conjugate(x))
    assert conjugate(Order(y)) == Order(conjugate(y))
    assert conjugate(Order(x**2)) == Order(conjugate(x)**2)
    assert conjugate(Order(y**2)) == Order(conjugate(y)**2)
    assert transpose(Order(x)) == Order(transpose(x))
    assert transpose(Order(y)) == Order(transpose(y))
    assert transpose(Order(x**2)) == Order(transpose(x)**2)
    assert transpose(Order(y**2)) == Order(transpose(y)**2)


def test_order_noncommutative():
    A = Symbol('A', commutative=False)
    assert Order(A + A*x, x) == Order(1, x)
    assert (A + A*x)*Order(x) == Order(x)
    assert (A*x)*Order(x) == Order(x**2, x)
    assert expand((1 + Order(x))*A*A*x) == A*A*x + Order(x**2, x)
    assert expand((A*A + Order(x))*x) == A*A*x + Order(x**2, x)
    assert expand((A + Order(x))*A*x) == A*A*x + Order(x**2, x)


def test_issue_6753():
    assert (1 + x**2)**10000*O(x) == O(x)


def test_order_at_infinity():
    assert Order(1 + x, (x, oo)) == Order(x, (x, oo))
    assert Order(3*x, (x, oo)) == Order(x, (x, oo))
    assert Order(x, (x, oo))*3 == Order(x, (x, oo))
    assert -28*Order(x, (x, oo)) == Order(x, (x, oo))
    assert Order(Order(x, (x, oo)), (x, oo)) == Order(x, (x, oo))
    assert Order(Order(x, (x, oo)), (y, oo)) == Order(x, (x, oo), (y, oo))
    assert Order(3, (x, oo)) == Order(1, (x, oo))
    assert Order(x**2 + x + y, (x, oo)) == O(x**2, (x, oo))
    assert Order(x**2 + x + y, (y, oo)) == O(y, (y, oo))

    assert Order(2*x, (x, oo))*x == Order(x**2, (x, oo))
    assert Order(2*x, (x, oo))/x == Order(1, (x, oo))
    assert Order(2*x, (x, oo))*x*exp(1/x) == Order(x**2*exp(1/x), (x, oo))
    assert Order(2*x, (x, oo))*x*exp(1/x)/log(x)**3 == Order(x**2*exp(1/x)*log(x)**-3, (x, oo))

    assert Order(x, (x, oo)) + 1/x == 1/x + Order(x, (x, oo)) == Order(x, (x, oo))
    assert Order(x, (x, oo)) + 1 == 1 + Order(x, (x, oo)) == Order(x, (x, oo))
    assert Order(x, (x, oo)) + x == x + Order(x, (x, oo)) == Order(x, (x, oo))
    assert Order(x, (x, oo)) + x**2 == x**2 + Order(x, (x, oo))
    assert Order(1/x, (x, oo)) + 1/x**2 == 1/x**2 + Order(1/x, (x, oo)) == Order(1/x, (x, oo))
    assert Order(x, (x, oo)) + exp(1/x) == exp(1/x) + Order(x, (x, oo))

    assert Order(x, (x, oo))**2 == Order(x**2, (x, oo))

    assert Order(x, (x, oo)) + Order(x**2, (x, oo)) == Order(x**2, (x, oo))
    assert Order(x, (x, oo)) + Order(x**-2, (x, oo)) == Order(x, (x, oo))
    assert Order(x, (x, oo)) + Order(1/x, (x, oo)) == Order(x, (x, oo))

    assert Order(x, (x, oo)) - Order(x, (x, oo)) == Order(x, (x, oo))
    assert Order(x, (x, oo)) + Order(1, (x, oo)) == Order(x, (x, oo))
    assert Order(x, (x, oo)) + Order(x**2, (x, oo)) == Order(x**2, (x, oo))
    assert Order(1/x, (x, oo)) + Order(1, (x, oo)) == Order(1, (x, oo))
    assert Order(x, (x, oo)) + Order(exp(1/x), (x, oo)) == Order(x, (x, oo))
    assert Order(x**3, (x, oo)) + Order(exp(2/x), (x, oo)) == Order(x**3, (x, oo))
    assert Order(x**-3, (x, oo)) + Order(exp(2/x), (x, oo)) == Order(exp(2/x), (x, oo))

    # issue 7207
    assert Order(exp(x), (x, oo)).expr == Order(2*exp(x), (x, oo)).expr == exp(x)
    assert Order(y**x, (x, oo)).expr == Order(2*y**x, (x, oo)).expr == exp(x*log(y))

    # issue 19545
    assert Order(1/x - 3/(3*x + 2), (x, oo)).expr == x**(-2)

def test_mixing_order_at_zero_and_infinity():
    assert (Order(x, (x, 0)) + Order(x, (x, oo))).is_Add
    assert Order(x, (x, 0)) + Order(x, (x, oo)) == Order(x, (x, oo)) + Order(x, (x, 0))
    assert Order(Order(x, (x, oo))) == Order(x, (x, oo))

    # not supported (yet)
    raises(NotImplementedError, lambda: Order(x, (x, 0))*Order(x, (x, oo)))
    raises(NotImplementedError, lambda: Order(x, (x, oo))*Order(x, (x, 0)))
    raises(NotImplementedError, lambda: Order(Order(x, (x, oo)), y))
    raises(NotImplementedError, lambda: Order(Order(x), (x, oo)))


def test_order_at_some_point():
    assert Order(x, (x, 1)) == Order(1, (x, 1))
    assert Order(2*x - 2, (x, 1)) == Order(x - 1, (x, 1))
    assert Order(-x + 1, (x, 1)) == Order(x - 1, (x, 1))
    assert Order(x - 1, (x, 1))**2 == Order((x - 1)**2, (x, 1))
    assert Order(x - 2, (x, 2)) - O(x - 2, (x, 2)) == Order(x - 2, (x, 2))


def test_order_subs_limits():
    # issue 3333
    assert (1 + Order(x)).subs(x, 1/x) == 1 + Order(1/x, (x, oo))
    assert (1 + Order(x)).limit(x, 0) == 1
    # issue 5769
    assert ((x + Order(x**2))/x).limit(x, 0) == 1

    assert Order(x**2).subs(x, y - 1) == Order((y - 1)**2, (y, 1))
    assert Order(10*x**2, (x, 2)).subs(x, y - 1) == Order(1, (y, 3))

    #issue 19120
    assert O(x).subs(x, O(x)) == O(x)
    assert O(x**2).subs(x, x + O(x)) == O(x**2)
    assert O(x, (x, oo)).subs(x, O(x, (x, oo))) == O(x, (x, oo))
    assert O(x**2, (x, oo)).subs(x, x + O(x, (x, oo))) == O(x**2, (x, oo))
    assert (x + O(x**2)).subs(x, x + O(x**2)) == x + O(x**2)
    assert (x**2 + O(x**2) + 1/x**2).subs(x, x + O(x**2)) == (x + O(x**2))**(-2) + O(x**2)
    assert (x**2 + O(x**2) + 1).subs(x, x + O(x**2)) == 1 + O(x**2)
    assert O(x, (x, oo)).subs(x, x + O(x**2, (x, oo))) == O(x**2, (x, oo))
    assert sin(x).series(n=8).subs(x,sin(x).series(n=8)).expand() == x - x**3/3 + x**5/10 - 8*x**7/315 + O(x**8)
    assert cos(x).series(n=8).subs(x,sin(x).series(n=8)).expand() == 1 - x**2/2 + 5*x**4/24 - 37*x**6/720 + O(x**8)
    assert O(x).subs(x, O(1/x, (x, oo))) == O(1/x, (x, oo))

@XFAIL
def test_order_failing_due_to_solveset():
    assert O(x**3).subs(x, exp(-x**2)) == O(exp(-3*x**2), (x, -oo))
    raises(NotImplementedError, lambda: O(x).subs(x, O(1/x))) # mixing of order at different points


def test_issue_9351():
    assert exp(x).series(x, 10, 1) == exp(10) + Order(x - 10, (x, 10))


def test_issue_9192():
    assert O(1)*O(1) == O(1)
    assert O(1)**O(1) == O(1)


def test_issue_9910():
    assert O(x*log(x) + sin(x), (x, oo)) == O(x*log(x), (x, oo))


def test_performance_of_adding_order():
    l = [x**i for i in range(1000)]
    l.append(O(x**1001))
    assert Add(*l).subs(x,1) == O(1)

def test_issue_14622():
    assert (x**(-4) + x**(-3) + x**(-1) + O(x**(-6), (x, oo))).as_numer_denom() == (
        x**4 + x**5 + x**7 + O(x**2, (x, oo)), x**8)
    assert (x**3 + O(x**2, (x, oo))).is_Add
    assert O(x**2, (x, oo)).contains(x**3) is False
    assert O(x, (x, oo)).contains(O(x, (x, 0))) is None
    assert O(x, (x, 0)).contains(O(x, (x, oo))) is None
    raises(NotImplementedError, lambda: O(x**3).contains(x**w))


def test_issue_15539():
    assert O(1/x**2 + 1/x**4, (x, -oo)) == O(1/x**2, (x, -oo))
    assert O(1/x**4 + exp(x), (x, -oo)) == O(1/x**4, (x, -oo))
    assert O(1/x**4 + exp(-x), (x, -oo)) == O(exp(-x), (x, -oo))
    assert O(1/x, (x, oo)).subs(x, -x) == O(-1/x, (x, -oo))

def test_issue_18606():
    assert unchanged(Order, 0)


def test_issue_22165():
    assert O(log(x)).contains(2)


def test_issue_23231():
    # This test checks Order for expressions having
    # arguments containing variables in exponents/powers.
    assert O(x**x + 2**x, (x, oo)) == O(exp(x*log(x)), (x, oo))
    assert O(x**x + x**2, (x, oo)) == O(exp(x*log(x)), (x, oo))
    assert O(x**x + 1/x**2, (x, oo)) == O(exp(x*log(x)), (x, oo))
    assert O(2**x + 3**x , (x, oo)) == O(exp(x*log(3)), (x, oo))


def test_issue_9917():
    assert O(x*sin(x) + 1, (x, oo)) == O(x, (x, oo))


def test_issue_22836():
    assert O(2**x + factorial(x), (x, oo)) == O(factorial(x), (x, oo))
    assert O(2**x + factorial(x) + x**x, (x, oo)) == O(exp(x*log(x)), (x, oo))
    assert O(x + factorial(x), (x, oo)) == O(factorial(x), (x, oo))