File size: 19,595 Bytes
ad5f26a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
from sympy.testing.pytest import raises
from sympy.vector.coordsysrect import CoordSys3D
from sympy.vector.scalar import BaseScalar
from sympy.core.function import expand
from sympy.core.numbers import pi
from sympy.core.symbol import symbols
from sympy.functions.elementary.hyperbolic import (cosh, sinh)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (acos, atan2, cos, sin)
from sympy.matrices.dense import zeros
from sympy.matrices.immutable import ImmutableDenseMatrix as Matrix
from sympy.simplify.simplify import simplify
from sympy.vector.functions import express
from sympy.vector.point import Point
from sympy.vector.vector import Vector
from sympy.vector.orienters import (AxisOrienter, BodyOrienter,
SpaceOrienter, QuaternionOrienter)
x, y, z = symbols('x y z')
a, b, c, q = symbols('a b c q')
q1, q2, q3, q4 = symbols('q1 q2 q3 q4')
def test_func_args():
A = CoordSys3D('A')
assert A.x.func(*A.x.args) == A.x
expr = 3*A.x + 4*A.y
assert expr.func(*expr.args) == expr
assert A.i.func(*A.i.args) == A.i
v = A.x*A.i + A.y*A.j + A.z*A.k
assert v.func(*v.args) == v
assert A.origin.func(*A.origin.args) == A.origin
def test_coordsys3d_equivalence():
A = CoordSys3D('A')
A1 = CoordSys3D('A')
assert A1 == A
B = CoordSys3D('B')
assert A != B
def test_orienters():
A = CoordSys3D('A')
axis_orienter = AxisOrienter(a, A.k)
body_orienter = BodyOrienter(a, b, c, '123')
space_orienter = SpaceOrienter(a, b, c, '123')
q_orienter = QuaternionOrienter(q1, q2, q3, q4)
assert axis_orienter.rotation_matrix(A) == Matrix([
[ cos(a), sin(a), 0],
[-sin(a), cos(a), 0],
[ 0, 0, 1]])
assert body_orienter.rotation_matrix() == Matrix([
[ cos(b)*cos(c), sin(a)*sin(b)*cos(c) + sin(c)*cos(a),
sin(a)*sin(c) - sin(b)*cos(a)*cos(c)],
[-sin(c)*cos(b), -sin(a)*sin(b)*sin(c) + cos(a)*cos(c),
sin(a)*cos(c) + sin(b)*sin(c)*cos(a)],
[ sin(b), -sin(a)*cos(b),
cos(a)*cos(b)]])
assert space_orienter.rotation_matrix() == Matrix([
[cos(b)*cos(c), sin(c)*cos(b), -sin(b)],
[sin(a)*sin(b)*cos(c) - sin(c)*cos(a),
sin(a)*sin(b)*sin(c) + cos(a)*cos(c), sin(a)*cos(b)],
[sin(a)*sin(c) + sin(b)*cos(a)*cos(c), -sin(a)*cos(c) +
sin(b)*sin(c)*cos(a), cos(a)*cos(b)]])
assert q_orienter.rotation_matrix() == Matrix([
[q1**2 + q2**2 - q3**2 - q4**2, 2*q1*q4 + 2*q2*q3,
-2*q1*q3 + 2*q2*q4],
[-2*q1*q4 + 2*q2*q3, q1**2 - q2**2 + q3**2 - q4**2,
2*q1*q2 + 2*q3*q4],
[2*q1*q3 + 2*q2*q4,
-2*q1*q2 + 2*q3*q4, q1**2 - q2**2 - q3**2 + q4**2]])
def test_coordinate_vars():
"""
Tests the coordinate variables functionality with respect to
reorientation of coordinate systems.
"""
A = CoordSys3D('A')
# Note that the name given on the lhs is different from A.x._name
assert BaseScalar(0, A, 'A_x', r'\mathbf{{x}_{A}}') == A.x
assert BaseScalar(1, A, 'A_y', r'\mathbf{{y}_{A}}') == A.y
assert BaseScalar(2, A, 'A_z', r'\mathbf{{z}_{A}}') == A.z
assert BaseScalar(0, A, 'A_x', r'\mathbf{{x}_{A}}').__hash__() == A.x.__hash__()
assert isinstance(A.x, BaseScalar) and \
isinstance(A.y, BaseScalar) and \
isinstance(A.z, BaseScalar)
assert A.x*A.y == A.y*A.x
assert A.scalar_map(A) == {A.x: A.x, A.y: A.y, A.z: A.z}
assert A.x.system == A
assert A.x.diff(A.x) == 1
B = A.orient_new_axis('B', q, A.k)
assert B.scalar_map(A) == {B.z: A.z, B.y: -A.x*sin(q) + A.y*cos(q),
B.x: A.x*cos(q) + A.y*sin(q)}
assert A.scalar_map(B) == {A.x: B.x*cos(q) - B.y*sin(q),
A.y: B.x*sin(q) + B.y*cos(q), A.z: B.z}
assert express(B.x, A, variables=True) == A.x*cos(q) + A.y*sin(q)
assert express(B.y, A, variables=True) == -A.x*sin(q) + A.y*cos(q)
assert express(B.z, A, variables=True) == A.z
assert expand(express(B.x*B.y*B.z, A, variables=True)) == \
expand(A.z*(-A.x*sin(q) + A.y*cos(q))*(A.x*cos(q) + A.y*sin(q)))
assert express(B.x*B.i + B.y*B.j + B.z*B.k, A) == \
(B.x*cos(q) - B.y*sin(q))*A.i + (B.x*sin(q) + \
B.y*cos(q))*A.j + B.z*A.k
assert simplify(express(B.x*B.i + B.y*B.j + B.z*B.k, A, \
variables=True)) == \
A.x*A.i + A.y*A.j + A.z*A.k
assert express(A.x*A.i + A.y*A.j + A.z*A.k, B) == \
(A.x*cos(q) + A.y*sin(q))*B.i + \
(-A.x*sin(q) + A.y*cos(q))*B.j + A.z*B.k
assert simplify(express(A.x*A.i + A.y*A.j + A.z*A.k, B, \
variables=True)) == \
B.x*B.i + B.y*B.j + B.z*B.k
N = B.orient_new_axis('N', -q, B.k)
assert N.scalar_map(A) == \
{N.x: A.x, N.z: A.z, N.y: A.y}
C = A.orient_new_axis('C', q, A.i + A.j + A.k)
mapping = A.scalar_map(C)
assert mapping[A.x].equals(C.x*(2*cos(q) + 1)/3 +
C.y*(-2*sin(q + pi/6) + 1)/3 +
C.z*(-2*cos(q + pi/3) + 1)/3)
assert mapping[A.y].equals(C.x*(-2*cos(q + pi/3) + 1)/3 +
C.y*(2*cos(q) + 1)/3 +
C.z*(-2*sin(q + pi/6) + 1)/3)
assert mapping[A.z].equals(C.x*(-2*sin(q + pi/6) + 1)/3 +
C.y*(-2*cos(q + pi/3) + 1)/3 +
C.z*(2*cos(q) + 1)/3)
D = A.locate_new('D', a*A.i + b*A.j + c*A.k)
assert D.scalar_map(A) == {D.z: A.z - c, D.x: A.x - a, D.y: A.y - b}
E = A.orient_new_axis('E', a, A.k, a*A.i + b*A.j + c*A.k)
assert A.scalar_map(E) == {A.z: E.z + c,
A.x: E.x*cos(a) - E.y*sin(a) + a,
A.y: E.x*sin(a) + E.y*cos(a) + b}
assert E.scalar_map(A) == {E.x: (A.x - a)*cos(a) + (A.y - b)*sin(a),
E.y: (-A.x + a)*sin(a) + (A.y - b)*cos(a),
E.z: A.z - c}
F = A.locate_new('F', Vector.zero)
assert A.scalar_map(F) == {A.z: F.z, A.x: F.x, A.y: F.y}
def test_rotation_matrix():
N = CoordSys3D('N')
A = N.orient_new_axis('A', q1, N.k)
B = A.orient_new_axis('B', q2, A.i)
C = B.orient_new_axis('C', q3, B.j)
D = N.orient_new_axis('D', q4, N.j)
E = N.orient_new_space('E', q1, q2, q3, '123')
F = N.orient_new_quaternion('F', q1, q2, q3, q4)
G = N.orient_new_body('G', q1, q2, q3, '123')
assert N.rotation_matrix(C) == Matrix([
[- sin(q1) * sin(q2) * sin(q3) + cos(q1) * cos(q3), - sin(q1) *
cos(q2), sin(q1) * sin(q2) * cos(q3) + sin(q3) * cos(q1)], \
[sin(q1) * cos(q3) + sin(q2) * sin(q3) * cos(q1), \
cos(q1) * cos(q2), sin(q1) * sin(q3) - sin(q2) * cos(q1) * \
cos(q3)], [- sin(q3) * cos(q2), sin(q2), cos(q2) * cos(q3)]])
test_mat = D.rotation_matrix(C) - Matrix(
[[cos(q1) * cos(q3) * cos(q4) - sin(q3) * (- sin(q4) * cos(q2) +
sin(q1) * sin(q2) * cos(q4)), - sin(q2) * sin(q4) - sin(q1) *
cos(q2) * cos(q4), sin(q3) * cos(q1) * cos(q4) + cos(q3) * \
(- sin(q4) * cos(q2) + sin(q1) * sin(q2) * cos(q4))], \
[sin(q1) * cos(q3) + sin(q2) * sin(q3) * cos(q1), cos(q1) * \
cos(q2), sin(q1) * sin(q3) - sin(q2) * cos(q1) * cos(q3)], \
[sin(q4) * cos(q1) * cos(q3) - sin(q3) * (cos(q2) * cos(q4) + \
sin(q1) * sin(q2) * \
sin(q4)), sin(q2) *
cos(q4) - sin(q1) * sin(q4) * cos(q2), sin(q3) * \
sin(q4) * cos(q1) + cos(q3) * (cos(q2) * cos(q4) + \
sin(q1) * sin(q2) * sin(q4))]])
assert test_mat.expand() == zeros(3, 3)
assert E.rotation_matrix(N) == Matrix(
[[cos(q2)*cos(q3), sin(q3)*cos(q2), -sin(q2)],
[sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1), \
sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3), sin(q1)*cos(q2)], \
[sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3), - \
sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1), cos(q1)*cos(q2)]])
assert F.rotation_matrix(N) == Matrix([[
q1**2 + q2**2 - q3**2 - q4**2,
2*q1*q4 + 2*q2*q3, -2*q1*q3 + 2*q2*q4],[ -2*q1*q4 + 2*q2*q3,
q1**2 - q2**2 + q3**2 - q4**2, 2*q1*q2 + 2*q3*q4],
[2*q1*q3 + 2*q2*q4,
-2*q1*q2 + 2*q3*q4,
q1**2 - q2**2 - q3**2 + q4**2]])
assert G.rotation_matrix(N) == Matrix([[
cos(q2)*cos(q3), sin(q1)*sin(q2)*cos(q3) + sin(q3)*cos(q1),
sin(q1)*sin(q3) - sin(q2)*cos(q1)*cos(q3)], [
-sin(q3)*cos(q2), -sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3),
sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1)],[
sin(q2), -sin(q1)*cos(q2), cos(q1)*cos(q2)]])
def test_vector_with_orientation():
"""
Tests the effects of orientation of coordinate systems on
basic vector operations.
"""
N = CoordSys3D('N')
A = N.orient_new_axis('A', q1, N.k)
B = A.orient_new_axis('B', q2, A.i)
C = B.orient_new_axis('C', q3, B.j)
# Test to_matrix
v1 = a*N.i + b*N.j + c*N.k
assert v1.to_matrix(A) == Matrix([[ a*cos(q1) + b*sin(q1)],
[-a*sin(q1) + b*cos(q1)],
[ c]])
# Test dot
assert N.i.dot(A.i) == cos(q1)
assert N.i.dot(A.j) == -sin(q1)
assert N.i.dot(A.k) == 0
assert N.j.dot(A.i) == sin(q1)
assert N.j.dot(A.j) == cos(q1)
assert N.j.dot(A.k) == 0
assert N.k.dot(A.i) == 0
assert N.k.dot(A.j) == 0
assert N.k.dot(A.k) == 1
assert N.i.dot(A.i + A.j) == -sin(q1) + cos(q1) == \
(A.i + A.j).dot(N.i)
assert A.i.dot(C.i) == cos(q3)
assert A.i.dot(C.j) == 0
assert A.i.dot(C.k) == sin(q3)
assert A.j.dot(C.i) == sin(q2)*sin(q3)
assert A.j.dot(C.j) == cos(q2)
assert A.j.dot(C.k) == -sin(q2)*cos(q3)
assert A.k.dot(C.i) == -cos(q2)*sin(q3)
assert A.k.dot(C.j) == sin(q2)
assert A.k.dot(C.k) == cos(q2)*cos(q3)
# Test cross
assert N.i.cross(A.i) == sin(q1)*A.k
assert N.i.cross(A.j) == cos(q1)*A.k
assert N.i.cross(A.k) == -sin(q1)*A.i - cos(q1)*A.j
assert N.j.cross(A.i) == -cos(q1)*A.k
assert N.j.cross(A.j) == sin(q1)*A.k
assert N.j.cross(A.k) == cos(q1)*A.i - sin(q1)*A.j
assert N.k.cross(A.i) == A.j
assert N.k.cross(A.j) == -A.i
assert N.k.cross(A.k) == Vector.zero
assert N.i.cross(A.i) == sin(q1)*A.k
assert N.i.cross(A.j) == cos(q1)*A.k
assert N.i.cross(A.i + A.j) == sin(q1)*A.k + cos(q1)*A.k
assert (A.i + A.j).cross(N.i) == (-sin(q1) - cos(q1))*N.k
assert A.i.cross(C.i) == sin(q3)*C.j
assert A.i.cross(C.j) == -sin(q3)*C.i + cos(q3)*C.k
assert A.i.cross(C.k) == -cos(q3)*C.j
assert C.i.cross(A.i) == (-sin(q3)*cos(q2))*A.j + \
(-sin(q2)*sin(q3))*A.k
assert C.j.cross(A.i) == (sin(q2))*A.j + (-cos(q2))*A.k
assert express(C.k.cross(A.i), C).trigsimp() == cos(q3)*C.j
def test_orient_new_methods():
N = CoordSys3D('N')
orienter1 = AxisOrienter(q4, N.j)
orienter2 = SpaceOrienter(q1, q2, q3, '123')
orienter3 = QuaternionOrienter(q1, q2, q3, q4)
orienter4 = BodyOrienter(q1, q2, q3, '123')
D = N.orient_new('D', (orienter1, ))
E = N.orient_new('E', (orienter2, ))
F = N.orient_new('F', (orienter3, ))
G = N.orient_new('G', (orienter4, ))
assert D == N.orient_new_axis('D', q4, N.j)
assert E == N.orient_new_space('E', q1, q2, q3, '123')
assert F == N.orient_new_quaternion('F', q1, q2, q3, q4)
assert G == N.orient_new_body('G', q1, q2, q3, '123')
def test_locatenew_point():
"""
Tests Point class, and locate_new method in CoordSys3D.
"""
A = CoordSys3D('A')
assert isinstance(A.origin, Point)
v = a*A.i + b*A.j + c*A.k
C = A.locate_new('C', v)
assert C.origin.position_wrt(A) == \
C.position_wrt(A) == \
C.origin.position_wrt(A.origin) == v
assert A.origin.position_wrt(C) == \
A.position_wrt(C) == \
A.origin.position_wrt(C.origin) == -v
assert A.origin.express_coordinates(C) == (-a, -b, -c)
p = A.origin.locate_new('p', -v)
assert p.express_coordinates(A) == (-a, -b, -c)
assert p.position_wrt(C.origin) == p.position_wrt(C) == \
-2 * v
p1 = p.locate_new('p1', 2*v)
assert p1.position_wrt(C.origin) == Vector.zero
assert p1.express_coordinates(C) == (0, 0, 0)
p2 = p.locate_new('p2', A.i)
assert p1.position_wrt(p2) == 2*v - A.i
assert p2.express_coordinates(C) == (-2*a + 1, -2*b, -2*c)
def test_create_new():
a = CoordSys3D('a')
c = a.create_new('c', transformation='spherical')
assert c._parent == a
assert c.transformation_to_parent() == \
(c.r*sin(c.theta)*cos(c.phi), c.r*sin(c.theta)*sin(c.phi), c.r*cos(c.theta))
assert c.transformation_from_parent() == \
(sqrt(a.x**2 + a.y**2 + a.z**2), acos(a.z/sqrt(a.x**2 + a.y**2 + a.z**2)), atan2(a.y, a.x))
def test_evalf():
A = CoordSys3D('A')
v = 3*A.i + 4*A.j + a*A.k
assert v.n() == v.evalf()
assert v.evalf(subs={a:1}) == v.subs(a, 1).evalf()
def test_lame_coefficients():
a = CoordSys3D('a', 'spherical')
assert a.lame_coefficients() == (1, a.r, sin(a.theta)*a.r)
a = CoordSys3D('a')
assert a.lame_coefficients() == (1, 1, 1)
a = CoordSys3D('a', 'cartesian')
assert a.lame_coefficients() == (1, 1, 1)
a = CoordSys3D('a', 'cylindrical')
assert a.lame_coefficients() == (1, a.r, 1)
def test_transformation_equations():
x, y, z = symbols('x y z')
# Str
a = CoordSys3D('a', transformation='spherical',
variable_names=["r", "theta", "phi"])
r, theta, phi = a.base_scalars()
assert r == a.r
assert theta == a.theta
assert phi == a.phi
raises(AttributeError, lambda: a.x)
raises(AttributeError, lambda: a.y)
raises(AttributeError, lambda: a.z)
assert a.transformation_to_parent() == (
r*sin(theta)*cos(phi),
r*sin(theta)*sin(phi),
r*cos(theta)
)
assert a.lame_coefficients() == (1, r, r*sin(theta))
assert a.transformation_from_parent_function()(x, y, z) == (
sqrt(x ** 2 + y ** 2 + z ** 2),
acos((z) / sqrt(x**2 + y**2 + z**2)),
atan2(y, x)
)
a = CoordSys3D('a', transformation='cylindrical',
variable_names=["r", "theta", "z"])
r, theta, z = a.base_scalars()
assert a.transformation_to_parent() == (
r*cos(theta),
r*sin(theta),
z
)
assert a.lame_coefficients() == (1, a.r, 1)
assert a.transformation_from_parent_function()(x, y, z) == (sqrt(x**2 + y**2),
atan2(y, x), z)
a = CoordSys3D('a', 'cartesian')
assert a.transformation_to_parent() == (a.x, a.y, a.z)
assert a.lame_coefficients() == (1, 1, 1)
assert a.transformation_from_parent_function()(x, y, z) == (x, y, z)
# Variables and expressions
# Cartesian with equation tuple:
x, y, z = symbols('x y z')
a = CoordSys3D('a', ((x, y, z), (x, y, z)))
a._calculate_inv_trans_equations()
assert a.transformation_to_parent() == (a.x1, a.x2, a.x3)
assert a.lame_coefficients() == (1, 1, 1)
assert a.transformation_from_parent_function()(x, y, z) == (x, y, z)
r, theta, z = symbols("r theta z")
# Cylindrical with equation tuple:
a = CoordSys3D('a', [(r, theta, z), (r*cos(theta), r*sin(theta), z)],
variable_names=["r", "theta", "z"])
r, theta, z = a.base_scalars()
assert a.transformation_to_parent() == (
r*cos(theta), r*sin(theta), z
)
assert a.lame_coefficients() == (
sqrt(sin(theta)**2 + cos(theta)**2),
sqrt(r**2*sin(theta)**2 + r**2*cos(theta)**2),
1
) # ==> this should simplify to (1, r, 1), tests are too slow with `simplify`.
# Definitions with `lambda`:
# Cartesian with `lambda`
a = CoordSys3D('a', lambda x, y, z: (x, y, z))
assert a.transformation_to_parent() == (a.x1, a.x2, a.x3)
assert a.lame_coefficients() == (1, 1, 1)
a._calculate_inv_trans_equations()
assert a.transformation_from_parent_function()(x, y, z) == (x, y, z)
# Spherical with `lambda`
a = CoordSys3D('a', lambda r, theta, phi: (r*sin(theta)*cos(phi), r*sin(theta)*sin(phi), r*cos(theta)),
variable_names=["r", "theta", "phi"])
r, theta, phi = a.base_scalars()
assert a.transformation_to_parent() == (
r*sin(theta)*cos(phi), r*sin(phi)*sin(theta), r*cos(theta)
)
assert a.lame_coefficients() == (
sqrt(sin(phi)**2*sin(theta)**2 + sin(theta)**2*cos(phi)**2 + cos(theta)**2),
sqrt(r**2*sin(phi)**2*cos(theta)**2 + r**2*sin(theta)**2 + r**2*cos(phi)**2*cos(theta)**2),
sqrt(r**2*sin(phi)**2*sin(theta)**2 + r**2*sin(theta)**2*cos(phi)**2)
) # ==> this should simplify to (1, r, sin(theta)*r), `simplify` is too slow.
# Cylindrical with `lambda`
a = CoordSys3D('a', lambda r, theta, z:
(r*cos(theta), r*sin(theta), z),
variable_names=["r", "theta", "z"]
)
r, theta, z = a.base_scalars()
assert a.transformation_to_parent() == (r*cos(theta), r*sin(theta), z)
assert a.lame_coefficients() == (
sqrt(sin(theta)**2 + cos(theta)**2),
sqrt(r**2*sin(theta)**2 + r**2*cos(theta)**2),
1
) # ==> this should simplify to (1, a.x, 1)
raises(TypeError, lambda: CoordSys3D('a', transformation={
x: x*sin(y)*cos(z), y:x*sin(y)*sin(z), z: x*cos(y)}))
def test_check_orthogonality():
x, y, z = symbols('x y z')
u,v = symbols('u, v')
a = CoordSys3D('a', transformation=((x, y, z), (x*sin(y)*cos(z), x*sin(y)*sin(z), x*cos(y))))
assert a._check_orthogonality(a._transformation) is True
a = CoordSys3D('a', transformation=((x, y, z), (x * cos(y), x * sin(y), z)))
assert a._check_orthogonality(a._transformation) is True
a = CoordSys3D('a', transformation=((u, v, z), (cosh(u) * cos(v), sinh(u) * sin(v), z)))
assert a._check_orthogonality(a._transformation) is True
raises(ValueError, lambda: CoordSys3D('a', transformation=((x, y, z), (x, x, z))))
raises(ValueError, lambda: CoordSys3D('a', transformation=(
(x, y, z), (x*sin(y/2)*cos(z), x*sin(y)*sin(z), x*cos(y)))))
def test_rotation_trans_equations():
a = CoordSys3D('a')
from sympy.core.symbol import symbols
q0 = symbols('q0')
assert a._rotation_trans_equations(a._parent_rotation_matrix, a.base_scalars()) == (a.x, a.y, a.z)
assert a._rotation_trans_equations(a._inverse_rotation_matrix(), a.base_scalars()) == (a.x, a.y, a.z)
b = a.orient_new_axis('b', 0, -a.k)
assert b._rotation_trans_equations(b._parent_rotation_matrix, b.base_scalars()) == (b.x, b.y, b.z)
assert b._rotation_trans_equations(b._inverse_rotation_matrix(), b.base_scalars()) == (b.x, b.y, b.z)
c = a.orient_new_axis('c', q0, -a.k)
assert c._rotation_trans_equations(c._parent_rotation_matrix, c.base_scalars()) == \
(-sin(q0) * c.y + cos(q0) * c.x, sin(q0) * c.x + cos(q0) * c.y, c.z)
assert c._rotation_trans_equations(c._inverse_rotation_matrix(), c.base_scalars()) == \
(sin(q0) * c.y + cos(q0) * c.x, -sin(q0) * c.x + cos(q0) * c.y, c.z)
|