File size: 14,094 Bytes
ad5f26a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
from sympy.core.function import Derivative
from sympy.vector.vector import Vector
from sympy.vector.coordsysrect import CoordSys3D
from sympy.simplify import simplify
from sympy.core.symbol import symbols
from sympy.core import S
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.vector.vector import Dot
from sympy.vector.operators import curl, divergence, gradient, Gradient, Divergence, Cross
from sympy.vector.deloperator import Del
from sympy.vector.functions import (is_conservative, is_solenoidal,
scalar_potential, directional_derivative,
laplacian, scalar_potential_difference)
from sympy.testing.pytest import raises
C = CoordSys3D('C')
i, j, k = C.base_vectors()
x, y, z = C.base_scalars()
delop = Del()
a, b, c, q = symbols('a b c q')
def test_del_operator():
# Tests for curl
assert delop ^ Vector.zero == Vector.zero
assert ((delop ^ Vector.zero).doit() == Vector.zero ==
curl(Vector.zero))
assert delop.cross(Vector.zero) == delop ^ Vector.zero
assert (delop ^ i).doit() == Vector.zero
assert delop.cross(2*y**2*j, doit=True) == Vector.zero
assert delop.cross(2*y**2*j) == delop ^ 2*y**2*j
v = x*y*z * (i + j + k)
assert ((delop ^ v).doit() ==
(-x*y + x*z)*i + (x*y - y*z)*j + (-x*z + y*z)*k ==
curl(v))
assert delop ^ v == delop.cross(v)
assert (delop.cross(2*x**2*j) ==
(Derivative(0, C.y) - Derivative(2*C.x**2, C.z))*C.i +
(-Derivative(0, C.x) + Derivative(0, C.z))*C.j +
(-Derivative(0, C.y) + Derivative(2*C.x**2, C.x))*C.k)
assert (delop.cross(2*x**2*j, doit=True) == 4*x*k ==
curl(2*x**2*j))
#Tests for divergence
assert delop & Vector.zero is S.Zero == divergence(Vector.zero)
assert (delop & Vector.zero).doit() is S.Zero
assert delop.dot(Vector.zero) == delop & Vector.zero
assert (delop & i).doit() is S.Zero
assert (delop & x**2*i).doit() == 2*x == divergence(x**2*i)
assert (delop.dot(v, doit=True) == x*y + y*z + z*x ==
divergence(v))
assert delop & v == delop.dot(v)
assert delop.dot(1/(x*y*z) * (i + j + k), doit=True) == \
- 1 / (x*y*z**2) - 1 / (x*y**2*z) - 1 / (x**2*y*z)
v = x*i + y*j + z*k
assert (delop & v == Derivative(C.x, C.x) +
Derivative(C.y, C.y) + Derivative(C.z, C.z))
assert delop.dot(v, doit=True) == 3 == divergence(v)
assert delop & v == delop.dot(v)
assert simplify((delop & v).doit()) == 3
#Tests for gradient
assert (delop.gradient(0, doit=True) == Vector.zero ==
gradient(0))
assert delop.gradient(0) == delop(0)
assert (delop(S.Zero)).doit() == Vector.zero
assert (delop(x) == (Derivative(C.x, C.x))*C.i +
(Derivative(C.x, C.y))*C.j + (Derivative(C.x, C.z))*C.k)
assert (delop(x)).doit() == i == gradient(x)
assert (delop(x*y*z) ==
(Derivative(C.x*C.y*C.z, C.x))*C.i +
(Derivative(C.x*C.y*C.z, C.y))*C.j +
(Derivative(C.x*C.y*C.z, C.z))*C.k)
assert (delop.gradient(x*y*z, doit=True) ==
y*z*i + z*x*j + x*y*k ==
gradient(x*y*z))
assert delop(x*y*z) == delop.gradient(x*y*z)
assert (delop(2*x**2)).doit() == 4*x*i
assert ((delop(a*sin(y) / x)).doit() ==
-a*sin(y)/x**2 * i + a*cos(y)/x * j)
#Tests for directional derivative
assert (Vector.zero & delop)(a) is S.Zero
assert ((Vector.zero & delop)(a)).doit() is S.Zero
assert ((v & delop)(Vector.zero)).doit() == Vector.zero
assert ((v & delop)(S.Zero)).doit() is S.Zero
assert ((i & delop)(x)).doit() == 1
assert ((j & delop)(y)).doit() == 1
assert ((k & delop)(z)).doit() == 1
assert ((i & delop)(x*y*z)).doit() == y*z
assert ((v & delop)(x)).doit() == x
assert ((v & delop)(x*y*z)).doit() == 3*x*y*z
assert (v & delop)(x + y + z) == C.x + C.y + C.z
assert ((v & delop)(x + y + z)).doit() == x + y + z
assert ((v & delop)(v)).doit() == v
assert ((i & delop)(v)).doit() == i
assert ((j & delop)(v)).doit() == j
assert ((k & delop)(v)).doit() == k
assert ((v & delop)(Vector.zero)).doit() == Vector.zero
# Tests for laplacian on scalar fields
assert laplacian(x*y*z) is S.Zero
assert laplacian(x**2) == S(2)
assert laplacian(x**2*y**2*z**2) == \
2*y**2*z**2 + 2*x**2*z**2 + 2*x**2*y**2
A = CoordSys3D('A', transformation="spherical", variable_names=["r", "theta", "phi"])
B = CoordSys3D('B', transformation='cylindrical', variable_names=["r", "theta", "z"])
assert laplacian(A.r + A.theta + A.phi) == 2/A.r + cos(A.theta)/(A.r**2*sin(A.theta))
assert laplacian(B.r + B.theta + B.z) == 1/B.r
# Tests for laplacian on vector fields
assert laplacian(x*y*z*(i + j + k)) == Vector.zero
assert laplacian(x*y**2*z*(i + j + k)) == \
2*x*z*i + 2*x*z*j + 2*x*z*k
def test_product_rules():
"""
Tests the six product rules defined with respect to the Del
operator
References
==========
.. [1] https://en.wikipedia.org/wiki/Del
"""
#Define the scalar and vector functions
f = 2*x*y*z
g = x*y + y*z + z*x
u = x**2*i + 4*j - y**2*z*k
v = 4*i + x*y*z*k
# First product rule
lhs = delop(f * g, doit=True)
rhs = (f * delop(g) + g * delop(f)).doit()
assert simplify(lhs) == simplify(rhs)
# Second product rule
lhs = delop(u & v).doit()
rhs = ((u ^ (delop ^ v)) + (v ^ (delop ^ u)) + \
((u & delop)(v)) + ((v & delop)(u))).doit()
assert simplify(lhs) == simplify(rhs)
# Third product rule
lhs = (delop & (f*v)).doit()
rhs = ((f * (delop & v)) + (v & (delop(f)))).doit()
assert simplify(lhs) == simplify(rhs)
# Fourth product rule
lhs = (delop & (u ^ v)).doit()
rhs = ((v & (delop ^ u)) - (u & (delop ^ v))).doit()
assert simplify(lhs) == simplify(rhs)
# Fifth product rule
lhs = (delop ^ (f * v)).doit()
rhs = (((delop(f)) ^ v) + (f * (delop ^ v))).doit()
assert simplify(lhs) == simplify(rhs)
# Sixth product rule
lhs = (delop ^ (u ^ v)).doit()
rhs = (u * (delop & v) - v * (delop & u) +
(v & delop)(u) - (u & delop)(v)).doit()
assert simplify(lhs) == simplify(rhs)
P = C.orient_new_axis('P', q, C.k) # type: ignore
scalar_field = 2*x**2*y*z
grad_field = gradient(scalar_field)
vector_field = y**2*i + 3*x*j + 5*y*z*k
curl_field = curl(vector_field)
def test_conservative():
assert is_conservative(Vector.zero) is True
assert is_conservative(i) is True
assert is_conservative(2 * i + 3 * j + 4 * k) is True
assert (is_conservative(y*z*i + x*z*j + x*y*k) is
True)
assert is_conservative(x * j) is False
assert is_conservative(grad_field) is True
assert is_conservative(curl_field) is False
assert (is_conservative(4*x*y*z*i + 2*x**2*z*j) is
False)
assert is_conservative(z*P.i + P.x*k) is True
def test_solenoidal():
assert is_solenoidal(Vector.zero) is True
assert is_solenoidal(i) is True
assert is_solenoidal(2 * i + 3 * j + 4 * k) is True
assert (is_solenoidal(y*z*i + x*z*j + x*y*k) is
True)
assert is_solenoidal(y * j) is False
assert is_solenoidal(grad_field) is False
assert is_solenoidal(curl_field) is True
assert is_solenoidal((-2*y + 3)*k) is True
assert is_solenoidal(cos(q)*i + sin(q)*j + cos(q)*P.k) is True
assert is_solenoidal(z*P.i + P.x*k) is True
def test_directional_derivative():
assert directional_derivative(C.x*C.y*C.z, 3*C.i + 4*C.j + C.k) == C.x*C.y + 4*C.x*C.z + 3*C.y*C.z
assert directional_derivative(5*C.x**2*C.z, 3*C.i + 4*C.j + C.k) == 5*C.x**2 + 30*C.x*C.z
assert directional_derivative(5*C.x**2*C.z, 4*C.j) is S.Zero
D = CoordSys3D("D", "spherical", variable_names=["r", "theta", "phi"],
vector_names=["e_r", "e_theta", "e_phi"])
r, theta, phi = D.base_scalars()
e_r, e_theta, e_phi = D.base_vectors()
assert directional_derivative(r**2*e_r, e_r) == 2*r*e_r
assert directional_derivative(5*r**2*phi, 3*e_r + 4*e_theta + e_phi) == 5*r**2 + 30*r*phi
def test_scalar_potential():
assert scalar_potential(Vector.zero, C) == 0
assert scalar_potential(i, C) == x
assert scalar_potential(j, C) == y
assert scalar_potential(k, C) == z
assert scalar_potential(y*z*i + x*z*j + x*y*k, C) == x*y*z
assert scalar_potential(grad_field, C) == scalar_field
assert scalar_potential(z*P.i + P.x*k, C) == x*z*cos(q) + y*z*sin(q)
assert scalar_potential(z*P.i + P.x*k, P) == P.x*P.z
raises(ValueError, lambda: scalar_potential(x*j, C))
def test_scalar_potential_difference():
point1 = C.origin.locate_new('P1', 1*i + 2*j + 3*k)
point2 = C.origin.locate_new('P2', 4*i + 5*j + 6*k)
genericpointC = C.origin.locate_new('RP', x*i + y*j + z*k)
genericpointP = P.origin.locate_new('PP', P.x*P.i + P.y*P.j + P.z*P.k)
assert scalar_potential_difference(S.Zero, C, point1, point2) == 0
assert (scalar_potential_difference(scalar_field, C, C.origin,
genericpointC) ==
scalar_field)
assert (scalar_potential_difference(grad_field, C, C.origin,
genericpointC) ==
scalar_field)
assert scalar_potential_difference(grad_field, C, point1, point2) == 948
assert (scalar_potential_difference(y*z*i + x*z*j +
x*y*k, C, point1,
genericpointC) ==
x*y*z - 6)
potential_diff_P = (2*P.z*(P.x*sin(q) + P.y*cos(q))*
(P.x*cos(q) - P.y*sin(q))**2)
assert (scalar_potential_difference(grad_field, P, P.origin,
genericpointP).simplify() ==
potential_diff_P.simplify())
def test_differential_operators_curvilinear_system():
A = CoordSys3D('A', transformation="spherical", variable_names=["r", "theta", "phi"])
B = CoordSys3D('B', transformation='cylindrical', variable_names=["r", "theta", "z"])
# Test for spherical coordinate system and gradient
assert gradient(3*A.r + 4*A.theta) == 3*A.i + 4/A.r*A.j
assert gradient(3*A.r*A.phi + 4*A.theta) == 3*A.phi*A.i + 4/A.r*A.j + (3/sin(A.theta))*A.k
assert gradient(0*A.r + 0*A.theta+0*A.phi) == Vector.zero
assert gradient(A.r*A.theta*A.phi) == A.theta*A.phi*A.i + A.phi*A.j + (A.theta/sin(A.theta))*A.k
# Test for spherical coordinate system and divergence
assert divergence(A.r * A.i + A.theta * A.j + A.phi * A.k) == \
(sin(A.theta)*A.r + cos(A.theta)*A.r*A.theta)/(sin(A.theta)*A.r**2) + 3 + 1/(sin(A.theta)*A.r)
assert divergence(3*A.r*A.phi*A.i + A.theta*A.j + A.r*A.theta*A.phi*A.k) == \
(sin(A.theta)*A.r + cos(A.theta)*A.r*A.theta)/(sin(A.theta)*A.r**2) + 9*A.phi + A.theta/sin(A.theta)
assert divergence(Vector.zero) == 0
assert divergence(0*A.i + 0*A.j + 0*A.k) == 0
# Test for spherical coordinate system and curl
assert curl(A.r*A.i + A.theta*A.j + A.phi*A.k) == \
(cos(A.theta)*A.phi/(sin(A.theta)*A.r))*A.i + (-A.phi/A.r)*A.j + A.theta/A.r*A.k
assert curl(A.r*A.j + A.phi*A.k) == (cos(A.theta)*A.phi/(sin(A.theta)*A.r))*A.i + (-A.phi/A.r)*A.j + 2*A.k
# Test for cylindrical coordinate system and gradient
assert gradient(0*B.r + 0*B.theta+0*B.z) == Vector.zero
assert gradient(B.r*B.theta*B.z) == B.theta*B.z*B.i + B.z*B.j + B.r*B.theta*B.k
assert gradient(3*B.r) == 3*B.i
assert gradient(2*B.theta) == 2/B.r * B.j
assert gradient(4*B.z) == 4*B.k
# Test for cylindrical coordinate system and divergence
assert divergence(B.r*B.i + B.theta*B.j + B.z*B.k) == 3 + 1/B.r
assert divergence(B.r*B.j + B.z*B.k) == 1
# Test for cylindrical coordinate system and curl
assert curl(B.r*B.j + B.z*B.k) == 2*B.k
assert curl(3*B.i + 2/B.r*B.j + 4*B.k) == Vector.zero
def test_mixed_coordinates():
# gradient
a = CoordSys3D('a')
b = CoordSys3D('b')
c = CoordSys3D('c')
assert gradient(a.x*b.y) == b.y*a.i + a.x*b.j
assert gradient(3*cos(q)*a.x*b.x+a.y*(a.x+(cos(q)+b.x))) ==\
(a.y + 3*b.x*cos(q))*a.i + (a.x + b.x + cos(q))*a.j + (3*a.x*cos(q) + a.y)*b.i
# Some tests need further work:
# assert gradient(a.x*(cos(a.x+b.x))) == (cos(a.x + b.x))*a.i + a.x*Gradient(cos(a.x + b.x))
# assert gradient(cos(a.x + b.x)*cos(a.x + b.z)) == Gradient(cos(a.x + b.x)*cos(a.x + b.z))
assert gradient(a.x**b.y) == Gradient(a.x**b.y)
# assert gradient(cos(a.x+b.y)*a.z) == None
assert gradient(cos(a.x*b.y)) == Gradient(cos(a.x*b.y))
assert gradient(3*cos(q)*a.x*b.x*a.z*a.y+ b.y*b.z + cos(a.x+a.y)*b.z) == \
(3*a.y*a.z*b.x*cos(q) - b.z*sin(a.x + a.y))*a.i + \
(3*a.x*a.z*b.x*cos(q) - b.z*sin(a.x + a.y))*a.j + (3*a.x*a.y*b.x*cos(q))*a.k + \
(3*a.x*a.y*a.z*cos(q))*b.i + b.z*b.j + (b.y + cos(a.x + a.y))*b.k
# divergence
assert divergence(a.i*a.x+a.j*a.y+a.z*a.k + b.i*b.x+b.j*b.y+b.z*b.k + c.i*c.x+c.j*c.y+c.z*c.k) == S(9)
# assert divergence(3*a.i*a.x*cos(a.x+b.z) + a.j*b.x*c.z) == None
assert divergence(3*a.i*a.x*a.z + b.j*b.x*c.z + 3*a.j*a.z*a.y) == \
6*a.z + b.x*Dot(b.j, c.k)
assert divergence(3*cos(q)*a.x*b.x*b.i*c.x) == \
3*a.x*b.x*cos(q)*Dot(b.i, c.i) + 3*a.x*c.x*cos(q) + 3*b.x*c.x*cos(q)*Dot(b.i, a.i)
assert divergence(a.x*b.x*c.x*Cross(a.x*a.i, a.y*b.j)) ==\
a.x*b.x*c.x*Divergence(Cross(a.x*a.i, a.y*b.j)) + \
b.x*c.x*Dot(Cross(a.x*a.i, a.y*b.j), a.i) + \
a.x*c.x*Dot(Cross(a.x*a.i, a.y*b.j), b.i) + \
a.x*b.x*Dot(Cross(a.x*a.i, a.y*b.j), c.i)
assert divergence(a.x*b.x*c.x*(a.x*a.i + b.x*b.i)) == \
4*a.x*b.x*c.x +\
a.x**2*c.x*Dot(a.i, b.i) +\
a.x**2*b.x*Dot(a.i, c.i) +\
b.x**2*c.x*Dot(b.i, a.i) +\
a.x*b.x**2*Dot(b.i, c.i)
|