File size: 14,094 Bytes
ad5f26a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
from sympy.core.function import Derivative
from sympy.vector.vector import Vector
from sympy.vector.coordsysrect import CoordSys3D
from sympy.simplify import simplify
from sympy.core.symbol import symbols
from sympy.core import S
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.vector.vector import Dot
from sympy.vector.operators import curl, divergence, gradient, Gradient, Divergence, Cross
from sympy.vector.deloperator import Del
from sympy.vector.functions import (is_conservative, is_solenoidal,
                                    scalar_potential, directional_derivative,
                                    laplacian, scalar_potential_difference)
from sympy.testing.pytest import raises

C = CoordSys3D('C')
i, j, k = C.base_vectors()
x, y, z = C.base_scalars()
delop = Del()
a, b, c, q = symbols('a b c q')


def test_del_operator():
    # Tests for curl

    assert delop ^ Vector.zero == Vector.zero
    assert ((delop ^ Vector.zero).doit() == Vector.zero ==
            curl(Vector.zero))
    assert delop.cross(Vector.zero) == delop ^ Vector.zero
    assert (delop ^ i).doit() == Vector.zero
    assert delop.cross(2*y**2*j, doit=True) == Vector.zero
    assert delop.cross(2*y**2*j) == delop ^ 2*y**2*j
    v = x*y*z * (i + j + k)
    assert ((delop ^ v).doit() ==
            (-x*y + x*z)*i + (x*y - y*z)*j + (-x*z + y*z)*k ==
            curl(v))
    assert delop ^ v == delop.cross(v)
    assert (delop.cross(2*x**2*j) ==
            (Derivative(0, C.y) - Derivative(2*C.x**2, C.z))*C.i +
            (-Derivative(0, C.x) + Derivative(0, C.z))*C.j +
            (-Derivative(0, C.y) + Derivative(2*C.x**2, C.x))*C.k)
    assert (delop.cross(2*x**2*j, doit=True) == 4*x*k ==
            curl(2*x**2*j))

    #Tests for divergence
    assert delop & Vector.zero is S.Zero == divergence(Vector.zero)
    assert (delop & Vector.zero).doit() is S.Zero
    assert delop.dot(Vector.zero) == delop & Vector.zero
    assert (delop & i).doit() is S.Zero
    assert (delop & x**2*i).doit() == 2*x == divergence(x**2*i)
    assert (delop.dot(v, doit=True) == x*y + y*z + z*x ==
            divergence(v))
    assert delop & v == delop.dot(v)
    assert delop.dot(1/(x*y*z) * (i + j + k), doit=True) == \
           - 1 / (x*y*z**2) - 1 / (x*y**2*z) - 1 / (x**2*y*z)
    v = x*i + y*j + z*k
    assert (delop & v == Derivative(C.x, C.x) +
            Derivative(C.y, C.y) + Derivative(C.z, C.z))
    assert delop.dot(v, doit=True) == 3 == divergence(v)
    assert delop & v == delop.dot(v)
    assert simplify((delop & v).doit()) == 3

    #Tests for gradient
    assert (delop.gradient(0, doit=True) == Vector.zero ==
            gradient(0))
    assert delop.gradient(0) == delop(0)
    assert (delop(S.Zero)).doit() == Vector.zero
    assert (delop(x) == (Derivative(C.x, C.x))*C.i +
            (Derivative(C.x, C.y))*C.j + (Derivative(C.x, C.z))*C.k)
    assert (delop(x)).doit() == i == gradient(x)
    assert (delop(x*y*z) ==
            (Derivative(C.x*C.y*C.z, C.x))*C.i +
            (Derivative(C.x*C.y*C.z, C.y))*C.j +
            (Derivative(C.x*C.y*C.z, C.z))*C.k)
    assert (delop.gradient(x*y*z, doit=True) ==
            y*z*i + z*x*j + x*y*k ==
            gradient(x*y*z))
    assert delop(x*y*z) == delop.gradient(x*y*z)
    assert (delop(2*x**2)).doit() == 4*x*i
    assert ((delop(a*sin(y) / x)).doit() ==
            -a*sin(y)/x**2 * i + a*cos(y)/x * j)

    #Tests for directional derivative
    assert (Vector.zero & delop)(a) is S.Zero
    assert ((Vector.zero & delop)(a)).doit() is S.Zero
    assert ((v & delop)(Vector.zero)).doit() == Vector.zero
    assert ((v & delop)(S.Zero)).doit() is S.Zero
    assert ((i & delop)(x)).doit() == 1
    assert ((j & delop)(y)).doit() == 1
    assert ((k & delop)(z)).doit() == 1
    assert ((i & delop)(x*y*z)).doit() == y*z
    assert ((v & delop)(x)).doit() == x
    assert ((v & delop)(x*y*z)).doit() == 3*x*y*z
    assert (v & delop)(x + y + z) == C.x + C.y + C.z
    assert ((v & delop)(x + y + z)).doit() == x + y + z
    assert ((v & delop)(v)).doit() == v
    assert ((i & delop)(v)).doit() == i
    assert ((j & delop)(v)).doit() == j
    assert ((k & delop)(v)).doit() == k
    assert ((v & delop)(Vector.zero)).doit() == Vector.zero

    # Tests for laplacian on scalar fields
    assert laplacian(x*y*z) is S.Zero
    assert laplacian(x**2) == S(2)
    assert laplacian(x**2*y**2*z**2) == \
                    2*y**2*z**2 + 2*x**2*z**2 + 2*x**2*y**2
    A = CoordSys3D('A', transformation="spherical", variable_names=["r", "theta", "phi"])
    B = CoordSys3D('B', transformation='cylindrical', variable_names=["r", "theta", "z"])
    assert laplacian(A.r + A.theta + A.phi) == 2/A.r + cos(A.theta)/(A.r**2*sin(A.theta))
    assert laplacian(B.r + B.theta + B.z) == 1/B.r

    # Tests for laplacian on vector fields
    assert laplacian(x*y*z*(i + j + k)) == Vector.zero
    assert laplacian(x*y**2*z*(i + j + k)) == \
                            2*x*z*i + 2*x*z*j + 2*x*z*k


def test_product_rules():
    """
    Tests the six product rules defined with respect to the Del
    operator

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Del

    """

    #Define the scalar and vector functions
    f = 2*x*y*z
    g = x*y + y*z + z*x
    u = x**2*i + 4*j - y**2*z*k
    v = 4*i + x*y*z*k

    # First product rule
    lhs = delop(f * g, doit=True)
    rhs = (f * delop(g) + g * delop(f)).doit()
    assert simplify(lhs) == simplify(rhs)

    # Second product rule
    lhs = delop(u & v).doit()
    rhs = ((u ^ (delop ^ v)) + (v ^ (delop ^ u)) + \
          ((u & delop)(v)) + ((v & delop)(u))).doit()
    assert simplify(lhs) == simplify(rhs)

    # Third product rule
    lhs = (delop & (f*v)).doit()
    rhs = ((f * (delop & v)) + (v & (delop(f)))).doit()
    assert simplify(lhs) == simplify(rhs)

    # Fourth product rule
    lhs = (delop & (u ^ v)).doit()
    rhs = ((v & (delop ^ u)) - (u & (delop ^ v))).doit()
    assert simplify(lhs) == simplify(rhs)

    # Fifth product rule
    lhs = (delop ^ (f * v)).doit()
    rhs = (((delop(f)) ^ v) + (f * (delop ^ v))).doit()
    assert simplify(lhs) == simplify(rhs)

    # Sixth product rule
    lhs = (delop ^ (u ^ v)).doit()
    rhs = (u * (delop & v) - v * (delop & u) +
           (v & delop)(u) - (u & delop)(v)).doit()
    assert simplify(lhs) == simplify(rhs)


P = C.orient_new_axis('P', q, C.k)  # type: ignore
scalar_field = 2*x**2*y*z
grad_field = gradient(scalar_field)
vector_field = y**2*i + 3*x*j + 5*y*z*k
curl_field = curl(vector_field)


def test_conservative():
    assert is_conservative(Vector.zero) is True
    assert is_conservative(i) is True
    assert is_conservative(2 * i + 3 * j + 4 * k) is True
    assert (is_conservative(y*z*i + x*z*j + x*y*k) is
            True)
    assert is_conservative(x * j) is False
    assert is_conservative(grad_field) is True
    assert is_conservative(curl_field) is False
    assert (is_conservative(4*x*y*z*i + 2*x**2*z*j) is
            False)
    assert is_conservative(z*P.i + P.x*k) is True


def test_solenoidal():
    assert is_solenoidal(Vector.zero) is True
    assert is_solenoidal(i) is True
    assert is_solenoidal(2 * i + 3 * j + 4 * k) is True
    assert (is_solenoidal(y*z*i + x*z*j + x*y*k) is
            True)
    assert is_solenoidal(y * j) is False
    assert is_solenoidal(grad_field) is False
    assert is_solenoidal(curl_field) is True
    assert is_solenoidal((-2*y + 3)*k) is True
    assert is_solenoidal(cos(q)*i + sin(q)*j + cos(q)*P.k) is True
    assert is_solenoidal(z*P.i + P.x*k) is True


def test_directional_derivative():
    assert directional_derivative(C.x*C.y*C.z, 3*C.i + 4*C.j + C.k) == C.x*C.y + 4*C.x*C.z + 3*C.y*C.z
    assert directional_derivative(5*C.x**2*C.z, 3*C.i + 4*C.j + C.k) == 5*C.x**2 + 30*C.x*C.z
    assert directional_derivative(5*C.x**2*C.z, 4*C.j) is S.Zero

    D = CoordSys3D("D", "spherical", variable_names=["r", "theta", "phi"],
                   vector_names=["e_r", "e_theta", "e_phi"])
    r, theta, phi = D.base_scalars()
    e_r, e_theta, e_phi = D.base_vectors()
    assert directional_derivative(r**2*e_r, e_r) == 2*r*e_r
    assert directional_derivative(5*r**2*phi, 3*e_r + 4*e_theta + e_phi) == 5*r**2 + 30*r*phi


def test_scalar_potential():
    assert scalar_potential(Vector.zero, C) == 0
    assert scalar_potential(i, C) == x
    assert scalar_potential(j, C) == y
    assert scalar_potential(k, C) == z
    assert scalar_potential(y*z*i + x*z*j + x*y*k, C) == x*y*z
    assert scalar_potential(grad_field, C) == scalar_field
    assert scalar_potential(z*P.i + P.x*k, C) == x*z*cos(q) + y*z*sin(q)
    assert scalar_potential(z*P.i + P.x*k, P) == P.x*P.z
    raises(ValueError, lambda: scalar_potential(x*j, C))


def test_scalar_potential_difference():
    point1 = C.origin.locate_new('P1', 1*i + 2*j + 3*k)
    point2 = C.origin.locate_new('P2', 4*i + 5*j + 6*k)
    genericpointC = C.origin.locate_new('RP', x*i + y*j + z*k)
    genericpointP = P.origin.locate_new('PP', P.x*P.i + P.y*P.j + P.z*P.k)
    assert scalar_potential_difference(S.Zero, C, point1, point2) == 0
    assert (scalar_potential_difference(scalar_field, C, C.origin,
                                        genericpointC) ==
            scalar_field)
    assert (scalar_potential_difference(grad_field, C, C.origin,
                                        genericpointC) ==
            scalar_field)
    assert scalar_potential_difference(grad_field, C, point1, point2) == 948
    assert (scalar_potential_difference(y*z*i + x*z*j +
                                        x*y*k, C, point1,
                                        genericpointC) ==
            x*y*z - 6)
    potential_diff_P = (2*P.z*(P.x*sin(q) + P.y*cos(q))*
                        (P.x*cos(q) - P.y*sin(q))**2)
    assert (scalar_potential_difference(grad_field, P, P.origin,
                                        genericpointP).simplify() ==
            potential_diff_P.simplify())


def test_differential_operators_curvilinear_system():
    A = CoordSys3D('A', transformation="spherical", variable_names=["r", "theta", "phi"])
    B = CoordSys3D('B', transformation='cylindrical', variable_names=["r", "theta", "z"])
    # Test for spherical coordinate system and gradient
    assert gradient(3*A.r + 4*A.theta) == 3*A.i + 4/A.r*A.j
    assert gradient(3*A.r*A.phi + 4*A.theta) == 3*A.phi*A.i + 4/A.r*A.j + (3/sin(A.theta))*A.k
    assert gradient(0*A.r + 0*A.theta+0*A.phi) == Vector.zero
    assert gradient(A.r*A.theta*A.phi) == A.theta*A.phi*A.i + A.phi*A.j + (A.theta/sin(A.theta))*A.k
    # Test for spherical coordinate system and divergence
    assert divergence(A.r * A.i + A.theta * A.j + A.phi * A.k) == \
           (sin(A.theta)*A.r + cos(A.theta)*A.r*A.theta)/(sin(A.theta)*A.r**2) + 3 + 1/(sin(A.theta)*A.r)
    assert divergence(3*A.r*A.phi*A.i + A.theta*A.j + A.r*A.theta*A.phi*A.k) == \
           (sin(A.theta)*A.r + cos(A.theta)*A.r*A.theta)/(sin(A.theta)*A.r**2) + 9*A.phi + A.theta/sin(A.theta)
    assert divergence(Vector.zero) == 0
    assert divergence(0*A.i + 0*A.j + 0*A.k) == 0
    # Test for spherical coordinate system and curl
    assert curl(A.r*A.i + A.theta*A.j + A.phi*A.k) == \
           (cos(A.theta)*A.phi/(sin(A.theta)*A.r))*A.i + (-A.phi/A.r)*A.j + A.theta/A.r*A.k
    assert curl(A.r*A.j + A.phi*A.k) == (cos(A.theta)*A.phi/(sin(A.theta)*A.r))*A.i + (-A.phi/A.r)*A.j + 2*A.k

    # Test for cylindrical coordinate system and gradient
    assert gradient(0*B.r + 0*B.theta+0*B.z) == Vector.zero
    assert gradient(B.r*B.theta*B.z) == B.theta*B.z*B.i + B.z*B.j + B.r*B.theta*B.k
    assert gradient(3*B.r) == 3*B.i
    assert gradient(2*B.theta) == 2/B.r * B.j
    assert gradient(4*B.z) == 4*B.k
    # Test for cylindrical coordinate system and divergence
    assert divergence(B.r*B.i + B.theta*B.j + B.z*B.k) == 3 + 1/B.r
    assert divergence(B.r*B.j + B.z*B.k) == 1
    # Test for cylindrical coordinate system and curl
    assert curl(B.r*B.j + B.z*B.k) == 2*B.k
    assert curl(3*B.i + 2/B.r*B.j + 4*B.k) == Vector.zero

def test_mixed_coordinates():
    # gradient
    a = CoordSys3D('a')
    b = CoordSys3D('b')
    c = CoordSys3D('c')
    assert gradient(a.x*b.y) == b.y*a.i + a.x*b.j
    assert gradient(3*cos(q)*a.x*b.x+a.y*(a.x+(cos(q)+b.x))) ==\
           (a.y + 3*b.x*cos(q))*a.i + (a.x + b.x + cos(q))*a.j + (3*a.x*cos(q) + a.y)*b.i
    # Some tests need further work:
    # assert gradient(a.x*(cos(a.x+b.x))) == (cos(a.x + b.x))*a.i + a.x*Gradient(cos(a.x + b.x))
    # assert gradient(cos(a.x + b.x)*cos(a.x + b.z)) == Gradient(cos(a.x + b.x)*cos(a.x + b.z))
    assert gradient(a.x**b.y) == Gradient(a.x**b.y)
    # assert gradient(cos(a.x+b.y)*a.z) == None
    assert gradient(cos(a.x*b.y)) == Gradient(cos(a.x*b.y))
    assert gradient(3*cos(q)*a.x*b.x*a.z*a.y+ b.y*b.z + cos(a.x+a.y)*b.z) == \
           (3*a.y*a.z*b.x*cos(q) - b.z*sin(a.x + a.y))*a.i + \
           (3*a.x*a.z*b.x*cos(q) - b.z*sin(a.x + a.y))*a.j + (3*a.x*a.y*b.x*cos(q))*a.k + \
           (3*a.x*a.y*a.z*cos(q))*b.i + b.z*b.j + (b.y + cos(a.x + a.y))*b.k
    # divergence
    assert divergence(a.i*a.x+a.j*a.y+a.z*a.k + b.i*b.x+b.j*b.y+b.z*b.k + c.i*c.x+c.j*c.y+c.z*c.k) == S(9)
    # assert divergence(3*a.i*a.x*cos(a.x+b.z) + a.j*b.x*c.z) == None
    assert divergence(3*a.i*a.x*a.z + b.j*b.x*c.z + 3*a.j*a.z*a.y) == \
            6*a.z + b.x*Dot(b.j, c.k)
    assert divergence(3*cos(q)*a.x*b.x*b.i*c.x) == \
        3*a.x*b.x*cos(q)*Dot(b.i, c.i) + 3*a.x*c.x*cos(q) + 3*b.x*c.x*cos(q)*Dot(b.i, a.i)
    assert divergence(a.x*b.x*c.x*Cross(a.x*a.i, a.y*b.j)) ==\
           a.x*b.x*c.x*Divergence(Cross(a.x*a.i, a.y*b.j)) + \
           b.x*c.x*Dot(Cross(a.x*a.i, a.y*b.j), a.i) + \
           a.x*c.x*Dot(Cross(a.x*a.i, a.y*b.j), b.i) + \
           a.x*b.x*Dot(Cross(a.x*a.i, a.y*b.j), c.i)
    assert divergence(a.x*b.x*c.x*(a.x*a.i + b.x*b.i)) == \
                4*a.x*b.x*c.x +\
                a.x**2*c.x*Dot(a.i, b.i) +\
                a.x**2*b.x*Dot(a.i, c.i) +\
                b.x**2*c.x*Dot(b.i, a.i) +\
                a.x*b.x**2*Dot(b.i, c.i)