File size: 8,200 Bytes
d1d4335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
// Metal helper functions
#pragma once
#include <c10/metal/common.h>
#include <metal_stdlib>

namespace c10 {
namespace metal {

namespace detail {
template <typename T>
struct vectypes {};

template <>
struct vectypes<float> {
  using type4 = float4;
  using type3 = float3;
  using type2 = float2;
};

template <>
struct vectypes<half> {
  using type4 = half4;
  using type3 = half3;
  using type2 = half2;
};

#if __METAL_VERSION__ >= 310
template <>
struct vectypes<bfloat> {
  using type4 = bfloat4;
  using type3 = bfloat3;
  using type2 = bfloat2;
};
#endif

template <>
struct vectypes<short> {
  using type4 = short4;
  using type3 = short3;
  using type2 = short2;
};

template <>
struct vectypes<int> {
  using type4 = int4;
  using type3 = int3;
  using type2 = int2;
};

template <>
struct vectypes<long> {
  using type4 = short4;
  using type3 = short3;
  using type2 = short2;
};

template <typename T>
struct OpMathType {
  using type = T;
};

template <>
struct OpMathType<half> {
  using type = float;
};

template <>
struct OpMathType<short> {
  using type = int;
};

template <>
struct OpMathType<char> {
  using type = int;
};

template <>
struct OpMathType<uchar> {
  using type = int;
};

#if __METAL_VERSION__ >= 310
template <>
struct OpMathType<bfloat> {
  using type = float;
};
#endif

// Type promotion structure for higher precision accumulation
template <typename T>
struct AccumulationType {
  using type = T;
};

// Specialization for half - promote to float for accumulation
template <>
struct AccumulationType<half> {
  using type = float;
};

#if __METAL_VERSION__ >= 310
// Specialization for bfloat - promote to float for accumulation
template <>
struct AccumulationType<bfloat> {
  using type = float;
};
#endif

} // namespace detail

template <typename T>
::metal::enable_if_t<::metal::is_floating_point_v<T>, T> max(T a, T b) {
  return ::metal::isunordered(a, b) ? NAN : ::metal::max(a, b);
}

template <typename T, typename U>
::metal::enable_if_t<::metal::is_integral_v<T>&& ::metal::is_integral_v<U>, T>
max(T a, U b) {
  return ::metal::max(a, static_cast<T>(b));
}

template <typename T>
::metal::enable_if_t<::metal::is_floating_point_v<T>, T> min(T a, T b) {
  return ::metal::isunordered(a, b) ? NAN : ::metal::min(a, b);
}

template <typename T, typename U>
::metal::enable_if_t<::metal::is_integral_v<T>&& ::metal::is_integral_v<U>, T>
min(T a, U b) {
  return ::metal::min(a, static_cast<T>(b));
}

#if __METAL_VERSION__ >= 310
template <>
inline bfloat min(bfloat a, bfloat b) {
  return bfloat(
      ::metal::isunordered(a, b) ? NAN : ::metal::min(float(a), float(b)));
}

template <>
inline bfloat max(bfloat a, bfloat b) {
  return bfloat(
      ::metal::isunordered(a, b) ? NAN : ::metal::max(float(a), float(b)));
}
#endif

template <typename T>
using vec2type_t = typename detail::vectypes<T>::type2;

template <typename T>
using vec4type_t = typename detail::vectypes<T>::type4;

template <typename T>
using opmath_t = typename detail::OpMathType<T>::type;

template <typename T>
using accum_t = typename detail::AccumulationType<T>::type;

// TODO: Move it to type_traits header may be
template <typename F, typename... Args>
using result_of = decltype(::metal::declval<F>()(::metal::declval<Args>()...));

template <typename T>
constexpr constant bool is_complex_v =
    ::metal::is_same_v<T, float2> || ::metal::is_same_v<T, half2>;

template <typename T>
constexpr constant bool is_scalar_floating_point_v =
    ::metal::is_floating_point_v<T> && ::metal::is_scalar_v<T>;

template <typename T>
constexpr constant bool is_scalar_integral_v =
    ::metal::is_integral_v<T> && ::metal::is_scalar_v<T>;

template <typename U, typename V>
using common_dtype = decltype(U(0) + V(0));

// floor_divide
template <
    typename T,
    typename U,
    ::metal::enable_if_t<
        is_scalar_integral_v<T> && is_scalar_integral_v<U>,
        bool> = true>
inline common_dtype<T, U> floor_divide(T x, U y) {
  const auto quot = x / y;
  return (x < 0) == (y < 0) ? quot : (x % y != 0) ? quot - 1 : quot;
}

template <
    typename T,
    typename U,
    ::metal::enable_if_t<
        is_scalar_floating_point_v<T> && is_scalar_floating_point_v<U>,
        bool> = true>
inline common_dtype<T, U> floor_divide(T x, U y) {
  return ::metal::floor(x / y);
}

// fmod
template <
    typename T,
    typename U,
    ::metal::enable_if_t<
        is_scalar_integral_v<T> && is_scalar_integral_v<U>,
        bool> = true>
inline common_dtype<T, U> fmod(T x, U y) {
  return x % y;
}

template <
    typename T,
    typename U,
    ::metal::enable_if_t<
        is_scalar_floating_point_v<T> && is_scalar_floating_point_v<U>,
        bool> = true>
inline common_dtype<T, U> fmod(T x, U y) {
  return ::metal::fmod(x, y);
}

// cast_to primitives
//  - No-op if types as the same
template <
    typename T,
    typename U,
    ::metal::enable_if_t<::metal::is_same_v<U, T>, bool> = true>
inline T cast_to(const U from) {
  return from;
}
//  - Simple cast between scalar and complex dtypes
template <
    typename T,
    typename U,
    ::metal::enable_if_t<
        !::metal::is_same_v<U, T> && (is_complex_v<T> == is_complex_v<U>),
        bool> = true>
inline T cast_to(const U from) {
  return static_cast<T>(from);
}

// - Scalar to complex
template <
    typename T,
    typename U,
    ::metal::enable_if_t<is_complex_v<T> && !is_complex_v<U>, bool> = true>
inline T cast_to(const U from) {
  return T(float(from), 0.0);
}
// - Complex to scalar (should not really be used, but exists for compliteness)
template <
    typename T,
    typename U,
    ::metal::enable_if_t<!is_complex_v<T> && is_complex_v<U>, bool> = true>
inline T cast_to(const U from) {
  return static_cast<T>(from.x);
}

// Generalizable math operators (used for both scalar and complex)

template <
    typename T,
    typename U,
    ::metal::enable_if_t<!is_complex_v<T>, bool> = true>
inline common_dtype<T, U> mul(const T x, const U y) {
  return x * y;
}

template <
    typename T,
    typename U,
    ::metal::enable_if_t<is_complex_v<T> && is_complex_v<U>, bool> = true>
inline common_dtype<T, U> mul(const T x, const U y) {
  return T(x.x * y.x - x.y * y.y, x.x * y.y + x.y * y.x);
}

template <
    typename T,
    typename U,
    ::metal::enable_if_t<!is_complex_v<T>, bool> = true>
inline common_dtype<T, U> div(const T x, const U y) {
  return x / y;
}

template <
    typename T,
    typename U,
    ::metal::enable_if_t<is_complex_v<T> && is_complex_v<U>, bool> = true>
inline common_dtype<T, U> div(const T x, const U y) {
  return T(::metal::dot(x, y), x.y * y.x - x.x * y.y) / ::metal::dot(y, y);
}

// Remainder operator
template <
    typename T,
    typename U,
    ::metal::enable_if_t<
        is_scalar_floating_point_v<T> || is_scalar_floating_point_v<U>,
        bool> = true>
inline float remainder(const T x, const U y) {
  const auto x_f = static_cast<float>(x);
  const auto y_f = static_cast<float>(y);
  return x_f - y_f * floor_divide(x_f, y_f);
}

template <
    typename T,
    typename U,
    ::metal::enable_if_t<
        is_scalar_integral_v<T> && is_scalar_integral_v<U>,
        bool> = true>
inline common_dtype<T, U> remainder(const T x, const U y) {
  auto rc = x % y;
  return rc == 0 || (x ^ y) > 0 ? rc : rc + y;
}

// Based on algorithm described in
// https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html#1202
inline float log1p(float x) {
  const auto xp1 = 1.0f + x;
  // First two elements of Taylor series for log(1+x) in Horner's form are:
  // log(1+x) = x * (1 - x * (.5 ...)), but if 1 + x == x, then it's just x
  if (xp1 == 1.0f) {
    return x;
  }
  auto rc = ::metal::precise::log(xp1);
  if (x > -.5 && x < .5) {
    // Order of operations is important here for higher precision
    rc *= x / (xp1 - 1.0f);
  }
  return rc;
}

} // namespace metal
} // namespace c10