|
|
from math import prod |
|
|
|
|
|
from sympy.core.numbers import Rational |
|
|
from sympy.functions.elementary.exponential import exp |
|
|
from sympy.functions.elementary.miscellaneous import sqrt |
|
|
from sympy.physics.quantum import Dagger, Commutator, qapply |
|
|
from sympy.physics.quantum.boson import BosonOp |
|
|
from sympy.physics.quantum.boson import ( |
|
|
BosonFockKet, BosonFockBra, BosonCoherentKet, BosonCoherentBra) |
|
|
|
|
|
|
|
|
def test_bosonoperator(): |
|
|
a = BosonOp('a') |
|
|
b = BosonOp('b') |
|
|
|
|
|
assert isinstance(a, BosonOp) |
|
|
assert isinstance(Dagger(a), BosonOp) |
|
|
|
|
|
assert a.is_annihilation |
|
|
assert not Dagger(a).is_annihilation |
|
|
|
|
|
assert BosonOp("a") == BosonOp("a", True) |
|
|
assert BosonOp("a") != BosonOp("c") |
|
|
assert BosonOp("a", True) != BosonOp("a", False) |
|
|
|
|
|
assert Commutator(a, Dagger(a)).doit() == 1 |
|
|
|
|
|
assert Commutator(a, Dagger(b)).doit() == a * Dagger(b) - Dagger(b) * a |
|
|
|
|
|
assert Dagger(exp(a)) == exp(Dagger(a)) |
|
|
|
|
|
|
|
|
def test_boson_states(): |
|
|
a = BosonOp("a") |
|
|
|
|
|
|
|
|
n = 3 |
|
|
assert (BosonFockBra(0) * BosonFockKet(1)).doit() == 0 |
|
|
assert (BosonFockBra(1) * BosonFockKet(1)).doit() == 1 |
|
|
assert qapply(BosonFockBra(n) * Dagger(a)**n * BosonFockKet(0)) \ |
|
|
== sqrt(prod(range(1, n+1))) |
|
|
|
|
|
|
|
|
alpha1, alpha2 = 1.2, 4.3 |
|
|
assert (BosonCoherentBra(alpha1) * BosonCoherentKet(alpha1)).doit() == 1 |
|
|
assert (BosonCoherentBra(alpha2) * BosonCoherentKet(alpha2)).doit() == 1 |
|
|
assert abs((BosonCoherentBra(alpha1) * BosonCoherentKet(alpha2)).doit() - |
|
|
exp((alpha1 - alpha2) ** 2 * Rational(-1, 2))) < 1e-12 |
|
|
assert qapply(a * BosonCoherentKet(alpha1)) == \ |
|
|
alpha1 * BosonCoherentKet(alpha1) |
|
|
|