|
|
""" |
|
|
==================== |
|
|
Generators - Classic |
|
|
==================== |
|
|
|
|
|
Unit tests for various classic graph generators in generators/classic.py |
|
|
""" |
|
|
import itertools |
|
|
import typing |
|
|
|
|
|
import pytest |
|
|
|
|
|
import networkx as nx |
|
|
from networkx.algorithms.isomorphism.isomorph import graph_could_be_isomorphic |
|
|
from networkx.utils import edges_equal, nodes_equal |
|
|
|
|
|
is_isomorphic = graph_could_be_isomorphic |
|
|
|
|
|
|
|
|
class TestGeneratorClassic: |
|
|
def test_balanced_tree(self): |
|
|
|
|
|
for r, h in [(2, 2), (3, 3), (6, 2)]: |
|
|
t = nx.balanced_tree(r, h) |
|
|
order = t.order() |
|
|
assert order == (r ** (h + 1) - 1) / (r - 1) |
|
|
assert nx.is_connected(t) |
|
|
assert t.size() == order - 1 |
|
|
dh = nx.degree_histogram(t) |
|
|
assert dh[0] == 0 |
|
|
assert dh[1] == r**h |
|
|
assert dh[r] == 1 |
|
|
assert dh[r + 1] == order - r**h - 1 |
|
|
assert len(dh) == r + 2 |
|
|
|
|
|
def test_balanced_tree_star(self): |
|
|
|
|
|
t = nx.balanced_tree(r=2, h=1) |
|
|
assert is_isomorphic(t, nx.star_graph(2)) |
|
|
t = nx.balanced_tree(r=5, h=1) |
|
|
assert is_isomorphic(t, nx.star_graph(5)) |
|
|
t = nx.balanced_tree(r=10, h=1) |
|
|
assert is_isomorphic(t, nx.star_graph(10)) |
|
|
|
|
|
def test_balanced_tree_path(self): |
|
|
"""Tests that the balanced tree with branching factor one is the |
|
|
path graph. |
|
|
|
|
|
""" |
|
|
|
|
|
T = nx.balanced_tree(1, 4) |
|
|
P = nx.path_graph(5) |
|
|
assert is_isomorphic(T, P) |
|
|
|
|
|
def test_full_rary_tree(self): |
|
|
r = 2 |
|
|
n = 9 |
|
|
t = nx.full_rary_tree(r, n) |
|
|
assert t.order() == n |
|
|
assert nx.is_connected(t) |
|
|
dh = nx.degree_histogram(t) |
|
|
assert dh[0] == 0 |
|
|
assert dh[1] == 5 |
|
|
assert dh[r] == 1 |
|
|
assert dh[r + 1] == 9 - 5 - 1 |
|
|
assert len(dh) == r + 2 |
|
|
|
|
|
def test_full_rary_tree_balanced(self): |
|
|
t = nx.full_rary_tree(2, 15) |
|
|
th = nx.balanced_tree(2, 3) |
|
|
assert is_isomorphic(t, th) |
|
|
|
|
|
def test_full_rary_tree_path(self): |
|
|
t = nx.full_rary_tree(1, 10) |
|
|
assert is_isomorphic(t, nx.path_graph(10)) |
|
|
|
|
|
def test_full_rary_tree_empty(self): |
|
|
t = nx.full_rary_tree(0, 10) |
|
|
assert is_isomorphic(t, nx.empty_graph(10)) |
|
|
t = nx.full_rary_tree(3, 0) |
|
|
assert is_isomorphic(t, nx.empty_graph(0)) |
|
|
|
|
|
def test_full_rary_tree_3_20(self): |
|
|
t = nx.full_rary_tree(3, 20) |
|
|
assert t.order() == 20 |
|
|
|
|
|
def test_barbell_graph(self): |
|
|
|
|
|
|
|
|
m1 = 3 |
|
|
m2 = 5 |
|
|
b = nx.barbell_graph(m1, m2) |
|
|
assert nx.number_of_nodes(b) == 2 * m1 + m2 |
|
|
assert nx.number_of_edges(b) == m1 * (m1 - 1) + m2 + 1 |
|
|
|
|
|
m1 = 4 |
|
|
m2 = 10 |
|
|
b = nx.barbell_graph(m1, m2) |
|
|
assert nx.number_of_nodes(b) == 2 * m1 + m2 |
|
|
assert nx.number_of_edges(b) == m1 * (m1 - 1) + m2 + 1 |
|
|
|
|
|
m1 = 3 |
|
|
m2 = 20 |
|
|
b = nx.barbell_graph(m1, m2) |
|
|
assert nx.number_of_nodes(b) == 2 * m1 + m2 |
|
|
assert nx.number_of_edges(b) == m1 * (m1 - 1) + m2 + 1 |
|
|
|
|
|
|
|
|
m1 = 1 |
|
|
m2 = 20 |
|
|
pytest.raises(nx.NetworkXError, nx.barbell_graph, m1, m2) |
|
|
|
|
|
|
|
|
m1 = 5 |
|
|
m2 = -2 |
|
|
pytest.raises(nx.NetworkXError, nx.barbell_graph, m1, m2) |
|
|
|
|
|
|
|
|
m1 = 2 |
|
|
m2 = 5 |
|
|
b = nx.barbell_graph(m1, m2) |
|
|
assert is_isomorphic(b, nx.path_graph(m2 + 4)) |
|
|
|
|
|
m1 = 2 |
|
|
m2 = 10 |
|
|
b = nx.barbell_graph(m1, m2) |
|
|
assert is_isomorphic(b, nx.path_graph(m2 + 4)) |
|
|
|
|
|
m1 = 2 |
|
|
m2 = 20 |
|
|
b = nx.barbell_graph(m1, m2) |
|
|
assert is_isomorphic(b, nx.path_graph(m2 + 4)) |
|
|
|
|
|
pytest.raises( |
|
|
nx.NetworkXError, nx.barbell_graph, m1, m2, create_using=nx.DiGraph() |
|
|
) |
|
|
|
|
|
mb = nx.barbell_graph(m1, m2, create_using=nx.MultiGraph()) |
|
|
assert edges_equal(mb.edges(), b.edges()) |
|
|
|
|
|
def test_binomial_tree(self): |
|
|
graphs = (None, nx.Graph, nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph) |
|
|
for create_using in graphs: |
|
|
for n in range(4): |
|
|
b = nx.binomial_tree(n, create_using) |
|
|
assert nx.number_of_nodes(b) == 2**n |
|
|
assert nx.number_of_edges(b) == (2**n - 1) |
|
|
|
|
|
def test_complete_graph(self): |
|
|
|
|
|
|
|
|
for m in [0, 1, 3, 5]: |
|
|
g = nx.complete_graph(m) |
|
|
assert nx.number_of_nodes(g) == m |
|
|
assert nx.number_of_edges(g) == m * (m - 1) // 2 |
|
|
|
|
|
mg = nx.complete_graph(m, create_using=nx.MultiGraph) |
|
|
assert edges_equal(mg.edges(), g.edges()) |
|
|
|
|
|
g = nx.complete_graph("abc") |
|
|
assert nodes_equal(g.nodes(), ["a", "b", "c"]) |
|
|
assert g.size() == 3 |
|
|
|
|
|
|
|
|
g = nx.complete_graph("abcb") |
|
|
assert nodes_equal(g.nodes(), ["a", "b", "c"]) |
|
|
assert g.size() == 4 |
|
|
|
|
|
g = nx.complete_graph("abcb", create_using=nx.MultiGraph) |
|
|
assert nodes_equal(g.nodes(), ["a", "b", "c"]) |
|
|
assert g.size() == 6 |
|
|
|
|
|
def test_complete_digraph(self): |
|
|
|
|
|
|
|
|
for m in [0, 1, 3, 5]: |
|
|
g = nx.complete_graph(m, create_using=nx.DiGraph) |
|
|
assert nx.number_of_nodes(g) == m |
|
|
assert nx.number_of_edges(g) == m * (m - 1) |
|
|
|
|
|
g = nx.complete_graph("abc", create_using=nx.DiGraph) |
|
|
assert len(g) == 3 |
|
|
assert g.size() == 6 |
|
|
assert g.is_directed() |
|
|
|
|
|
def test_circular_ladder_graph(self): |
|
|
G = nx.circular_ladder_graph(5) |
|
|
pytest.raises( |
|
|
nx.NetworkXError, nx.circular_ladder_graph, 5, create_using=nx.DiGraph |
|
|
) |
|
|
mG = nx.circular_ladder_graph(5, create_using=nx.MultiGraph) |
|
|
assert edges_equal(mG.edges(), G.edges()) |
|
|
|
|
|
def test_circulant_graph(self): |
|
|
|
|
|
Ci6_1 = nx.circulant_graph(6, [1]) |
|
|
C6 = nx.cycle_graph(6) |
|
|
assert edges_equal(Ci6_1.edges(), C6.edges()) |
|
|
|
|
|
|
|
|
Ci7 = nx.circulant_graph(7, [1, 2, 3]) |
|
|
K7 = nx.complete_graph(7) |
|
|
assert edges_equal(Ci7.edges(), K7.edges()) |
|
|
|
|
|
|
|
|
Ci6_1_3 = nx.circulant_graph(6, [1, 3]) |
|
|
K3_3 = nx.complete_bipartite_graph(3, 3) |
|
|
assert is_isomorphic(Ci6_1_3, K3_3) |
|
|
|
|
|
def test_cycle_graph(self): |
|
|
G = nx.cycle_graph(4) |
|
|
assert edges_equal(G.edges(), [(0, 1), (0, 3), (1, 2), (2, 3)]) |
|
|
mG = nx.cycle_graph(4, create_using=nx.MultiGraph) |
|
|
assert edges_equal(mG.edges(), [(0, 1), (0, 3), (1, 2), (2, 3)]) |
|
|
G = nx.cycle_graph(4, create_using=nx.DiGraph) |
|
|
assert not G.has_edge(2, 1) |
|
|
assert G.has_edge(1, 2) |
|
|
assert G.is_directed() |
|
|
|
|
|
G = nx.cycle_graph("abc") |
|
|
assert len(G) == 3 |
|
|
assert G.size() == 3 |
|
|
G = nx.cycle_graph("abcb") |
|
|
assert len(G) == 3 |
|
|
assert G.size() == 2 |
|
|
g = nx.cycle_graph("abc", nx.DiGraph) |
|
|
assert len(g) == 3 |
|
|
assert g.size() == 3 |
|
|
assert g.is_directed() |
|
|
g = nx.cycle_graph("abcb", nx.DiGraph) |
|
|
assert len(g) == 3 |
|
|
assert g.size() == 4 |
|
|
|
|
|
def test_dorogovtsev_goltsev_mendes_graph(self): |
|
|
G = nx.dorogovtsev_goltsev_mendes_graph(0) |
|
|
assert edges_equal(G.edges(), [(0, 1)]) |
|
|
assert nodes_equal(list(G), [0, 1]) |
|
|
G = nx.dorogovtsev_goltsev_mendes_graph(1) |
|
|
assert edges_equal(G.edges(), [(0, 1), (0, 2), (1, 2)]) |
|
|
assert nx.average_clustering(G) == 1.0 |
|
|
assert sorted(nx.triangles(G).values()) == [1, 1, 1] |
|
|
G = nx.dorogovtsev_goltsev_mendes_graph(10) |
|
|
assert nx.number_of_nodes(G) == 29526 |
|
|
assert nx.number_of_edges(G) == 59049 |
|
|
assert G.degree(0) == 1024 |
|
|
assert G.degree(1) == 1024 |
|
|
assert G.degree(2) == 1024 |
|
|
|
|
|
pytest.raises( |
|
|
nx.NetworkXError, |
|
|
nx.dorogovtsev_goltsev_mendes_graph, |
|
|
7, |
|
|
create_using=nx.DiGraph, |
|
|
) |
|
|
pytest.raises( |
|
|
nx.NetworkXError, |
|
|
nx.dorogovtsev_goltsev_mendes_graph, |
|
|
7, |
|
|
create_using=nx.MultiGraph, |
|
|
) |
|
|
|
|
|
def test_create_using(self): |
|
|
G = nx.empty_graph() |
|
|
assert isinstance(G, nx.Graph) |
|
|
pytest.raises(TypeError, nx.empty_graph, create_using=0.0) |
|
|
pytest.raises(TypeError, nx.empty_graph, create_using="Graph") |
|
|
|
|
|
G = nx.empty_graph(create_using=nx.MultiGraph) |
|
|
assert isinstance(G, nx.MultiGraph) |
|
|
G = nx.empty_graph(create_using=nx.DiGraph) |
|
|
assert isinstance(G, nx.DiGraph) |
|
|
|
|
|
G = nx.empty_graph(create_using=nx.DiGraph, default=nx.MultiGraph) |
|
|
assert isinstance(G, nx.DiGraph) |
|
|
G = nx.empty_graph(create_using=None, default=nx.MultiGraph) |
|
|
assert isinstance(G, nx.MultiGraph) |
|
|
G = nx.empty_graph(default=nx.MultiGraph) |
|
|
assert isinstance(G, nx.MultiGraph) |
|
|
|
|
|
G = nx.path_graph(5) |
|
|
H = nx.empty_graph(create_using=G) |
|
|
assert not H.is_multigraph() |
|
|
assert not H.is_directed() |
|
|
assert len(H) == 0 |
|
|
assert G is H |
|
|
|
|
|
H = nx.empty_graph(create_using=nx.MultiGraph()) |
|
|
assert H.is_multigraph() |
|
|
assert not H.is_directed() |
|
|
assert G is not H |
|
|
|
|
|
|
|
|
class Mixin(typing.Protocol): |
|
|
pass |
|
|
|
|
|
class MyGraph(Mixin, nx.DiGraph): |
|
|
pass |
|
|
|
|
|
G = nx.empty_graph(create_using=MyGraph) |
|
|
|
|
|
def test_empty_graph(self): |
|
|
G = nx.empty_graph() |
|
|
assert nx.number_of_nodes(G) == 0 |
|
|
G = nx.empty_graph(42) |
|
|
assert nx.number_of_nodes(G) == 42 |
|
|
assert nx.number_of_edges(G) == 0 |
|
|
|
|
|
G = nx.empty_graph("abc") |
|
|
assert len(G) == 3 |
|
|
assert G.size() == 0 |
|
|
|
|
|
|
|
|
G = nx.empty_graph(42, create_using=nx.DiGraph(name="duh")) |
|
|
assert nx.number_of_nodes(G) == 42 |
|
|
assert nx.number_of_edges(G) == 0 |
|
|
assert isinstance(G, nx.DiGraph) |
|
|
|
|
|
|
|
|
G = nx.empty_graph(42, create_using=nx.MultiGraph(name="duh")) |
|
|
assert nx.number_of_nodes(G) == 42 |
|
|
assert nx.number_of_edges(G) == 0 |
|
|
assert isinstance(G, nx.MultiGraph) |
|
|
|
|
|
|
|
|
pete = nx.petersen_graph() |
|
|
G = nx.empty_graph(42, create_using=pete) |
|
|
assert nx.number_of_nodes(G) == 42 |
|
|
assert nx.number_of_edges(G) == 0 |
|
|
assert isinstance(G, nx.Graph) |
|
|
|
|
|
def test_ladder_graph(self): |
|
|
for i, G in [ |
|
|
(0, nx.empty_graph(0)), |
|
|
(1, nx.path_graph(2)), |
|
|
(2, nx.hypercube_graph(2)), |
|
|
(10, nx.grid_graph([2, 10])), |
|
|
]: |
|
|
assert is_isomorphic(nx.ladder_graph(i), G) |
|
|
|
|
|
pytest.raises(nx.NetworkXError, nx.ladder_graph, 2, create_using=nx.DiGraph) |
|
|
|
|
|
g = nx.ladder_graph(2) |
|
|
mg = nx.ladder_graph(2, create_using=nx.MultiGraph) |
|
|
assert edges_equal(mg.edges(), g.edges()) |
|
|
|
|
|
def test_lollipop_graph_right_sizes(self): |
|
|
|
|
|
|
|
|
for m1, m2 in [(3, 5), (4, 10), (3, 20)]: |
|
|
G = nx.lollipop_graph(m1, m2) |
|
|
assert nx.number_of_nodes(G) == m1 + m2 |
|
|
assert nx.number_of_edges(G) == m1 * (m1 - 1) / 2 + m2 |
|
|
for first, second in [("ab", ""), ("abc", "defg")]: |
|
|
m1, m2 = len(first), len(second) |
|
|
G = nx.lollipop_graph(first, second) |
|
|
assert nx.number_of_nodes(G) == m1 + m2 |
|
|
assert nx.number_of_edges(G) == m1 * (m1 - 1) / 2 + m2 |
|
|
|
|
|
def test_lollipop_graph_exceptions(self): |
|
|
|
|
|
pytest.raises(nx.NetworkXError, nx.lollipop_graph, -1, 2) |
|
|
pytest.raises(nx.NetworkXError, nx.lollipop_graph, 1, 20) |
|
|
pytest.raises(nx.NetworkXError, nx.lollipop_graph, "", 20) |
|
|
pytest.raises(nx.NetworkXError, nx.lollipop_graph, "a", 20) |
|
|
|
|
|
|
|
|
pytest.raises(nx.NetworkXError, nx.lollipop_graph, 5, -2) |
|
|
|
|
|
|
|
|
with pytest.raises(nx.NetworkXError): |
|
|
nx.lollipop_graph(2, 20, create_using=nx.DiGraph) |
|
|
with pytest.raises(nx.NetworkXError): |
|
|
nx.lollipop_graph(2, 20, create_using=nx.MultiDiGraph) |
|
|
|
|
|
def test_lollipop_graph_same_as_path_when_m1_is_2(self): |
|
|
|
|
|
for m1, m2 in [(2, 0), (2, 5), (2, 10), ("ab", 20)]: |
|
|
G = nx.lollipop_graph(m1, m2) |
|
|
assert is_isomorphic(G, nx.path_graph(m2 + 2)) |
|
|
|
|
|
def test_lollipop_graph_for_multigraph(self): |
|
|
G = nx.lollipop_graph(5, 20) |
|
|
MG = nx.lollipop_graph(5, 20, create_using=nx.MultiGraph) |
|
|
assert edges_equal(MG.edges(), G.edges()) |
|
|
|
|
|
def test_lollipop_graph_mixing_input_types(self): |
|
|
cases = [(4, "abc"), ("abcd", 3), ([1, 2, 3, 4], "abc"), ("abcd", [1, 2, 3])] |
|
|
for m1, m2 in cases: |
|
|
G = nx.lollipop_graph(m1, m2) |
|
|
assert len(G) == 7 |
|
|
assert G.size() == 9 |
|
|
|
|
|
def test_lollipop_graph_not_int_integer_inputs(self): |
|
|
|
|
|
np = pytest.importorskip("numpy") |
|
|
G = nx.lollipop_graph(np.int32(4), np.int64(3)) |
|
|
assert len(G) == 7 |
|
|
assert G.size() == 9 |
|
|
|
|
|
def test_null_graph(self): |
|
|
assert nx.number_of_nodes(nx.null_graph()) == 0 |
|
|
|
|
|
def test_path_graph(self): |
|
|
p = nx.path_graph(0) |
|
|
assert is_isomorphic(p, nx.null_graph()) |
|
|
|
|
|
p = nx.path_graph(1) |
|
|
assert is_isomorphic(p, nx.empty_graph(1)) |
|
|
|
|
|
p = nx.path_graph(10) |
|
|
assert nx.is_connected(p) |
|
|
assert sorted(d for n, d in p.degree()) == [1, 1, 2, 2, 2, 2, 2, 2, 2, 2] |
|
|
assert p.order() - 1 == p.size() |
|
|
|
|
|
dp = nx.path_graph(3, create_using=nx.DiGraph) |
|
|
assert dp.has_edge(0, 1) |
|
|
assert not dp.has_edge(1, 0) |
|
|
|
|
|
mp = nx.path_graph(10, create_using=nx.MultiGraph) |
|
|
assert edges_equal(mp.edges(), p.edges()) |
|
|
|
|
|
G = nx.path_graph("abc") |
|
|
assert len(G) == 3 |
|
|
assert G.size() == 2 |
|
|
G = nx.path_graph("abcb") |
|
|
assert len(G) == 3 |
|
|
assert G.size() == 2 |
|
|
g = nx.path_graph("abc", nx.DiGraph) |
|
|
assert len(g) == 3 |
|
|
assert g.size() == 2 |
|
|
assert g.is_directed() |
|
|
g = nx.path_graph("abcb", nx.DiGraph) |
|
|
assert len(g) == 3 |
|
|
assert g.size() == 3 |
|
|
|
|
|
G = nx.path_graph((1, 2, 3, 2, 4)) |
|
|
assert G.has_edge(2, 4) |
|
|
|
|
|
def test_star_graph(self): |
|
|
assert is_isomorphic(nx.star_graph(""), nx.empty_graph(0)) |
|
|
assert is_isomorphic(nx.star_graph([]), nx.empty_graph(0)) |
|
|
assert is_isomorphic(nx.star_graph(0), nx.empty_graph(1)) |
|
|
assert is_isomorphic(nx.star_graph(1), nx.path_graph(2)) |
|
|
assert is_isomorphic(nx.star_graph(2), nx.path_graph(3)) |
|
|
assert is_isomorphic(nx.star_graph(5), nx.complete_bipartite_graph(1, 5)) |
|
|
|
|
|
s = nx.star_graph(10) |
|
|
assert sorted(d for n, d in s.degree()) == [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10] |
|
|
|
|
|
pytest.raises(nx.NetworkXError, nx.star_graph, 10, create_using=nx.DiGraph) |
|
|
|
|
|
ms = nx.star_graph(10, create_using=nx.MultiGraph) |
|
|
assert edges_equal(ms.edges(), s.edges()) |
|
|
|
|
|
G = nx.star_graph("abc") |
|
|
assert len(G) == 3 |
|
|
assert G.size() == 2 |
|
|
|
|
|
G = nx.star_graph("abcb") |
|
|
assert len(G) == 3 |
|
|
assert G.size() == 2 |
|
|
G = nx.star_graph("abcb", create_using=nx.MultiGraph) |
|
|
assert len(G) == 3 |
|
|
assert G.size() == 3 |
|
|
|
|
|
G = nx.star_graph("abcdefg") |
|
|
assert len(G) == 7 |
|
|
assert G.size() == 6 |
|
|
|
|
|
def test_non_int_integers_for_star_graph(self): |
|
|
np = pytest.importorskip("numpy") |
|
|
G = nx.star_graph(np.int32(3)) |
|
|
assert len(G) == 4 |
|
|
assert G.size() == 3 |
|
|
|
|
|
def test_tadpole_graph_right_sizes(self): |
|
|
|
|
|
|
|
|
for m1, m2 in [(3, 0), (3, 5), (4, 10), (3, 20)]: |
|
|
G = nx.tadpole_graph(m1, m2) |
|
|
assert nx.number_of_nodes(G) == m1 + m2 |
|
|
assert nx.number_of_edges(G) == m1 + m2 - (m1 == 2) |
|
|
for first, second in [("ab", ""), ("ab", "c"), ("abc", "defg")]: |
|
|
m1, m2 = len(first), len(second) |
|
|
print(first, second) |
|
|
G = nx.tadpole_graph(first, second) |
|
|
print(G.edges()) |
|
|
assert nx.number_of_nodes(G) == m1 + m2 |
|
|
assert nx.number_of_edges(G) == m1 + m2 - (m1 == 2) |
|
|
|
|
|
def test_tadpole_graph_exceptions(self): |
|
|
|
|
|
pytest.raises(nx.NetworkXError, nx.tadpole_graph, -1, 3) |
|
|
pytest.raises(nx.NetworkXError, nx.tadpole_graph, 0, 3) |
|
|
pytest.raises(nx.NetworkXError, nx.tadpole_graph, 1, 3) |
|
|
|
|
|
|
|
|
pytest.raises(nx.NetworkXError, nx.tadpole_graph, 5, -2) |
|
|
|
|
|
|
|
|
with pytest.raises(nx.NetworkXError): |
|
|
nx.tadpole_graph(2, 20, create_using=nx.DiGraph) |
|
|
with pytest.raises(nx.NetworkXError): |
|
|
nx.tadpole_graph(2, 20, create_using=nx.MultiDiGraph) |
|
|
|
|
|
def test_tadpole_graph_same_as_path_when_m1_is_2_or_0(self): |
|
|
|
|
|
for m1, m2 in [(2, 0), (2, 5), (2, 10), ("ab", 20)]: |
|
|
G = nx.tadpole_graph(m1, m2) |
|
|
assert is_isomorphic(G, nx.path_graph(m2 + 2)) |
|
|
|
|
|
def test_tadpole_graph_same_as_cycle_when_m2_is_0(self): |
|
|
|
|
|
for m1, m2 in [(4, 0), (7, 0)]: |
|
|
G = nx.tadpole_graph(m1, m2) |
|
|
assert is_isomorphic(G, nx.cycle_graph(m1)) |
|
|
|
|
|
def test_tadpole_graph_for_multigraph(self): |
|
|
G = nx.tadpole_graph(5, 20) |
|
|
MG = nx.tadpole_graph(5, 20, create_using=nx.MultiGraph) |
|
|
assert edges_equal(MG.edges(), G.edges()) |
|
|
|
|
|
def test_tadpole_graph_mixing_input_types(self): |
|
|
cases = [(4, "abc"), ("abcd", 3), ([1, 2, 3, 4], "abc"), ("abcd", [1, 2, 3])] |
|
|
for m1, m2 in cases: |
|
|
G = nx.tadpole_graph(m1, m2) |
|
|
assert len(G) == 7 |
|
|
assert G.size() == 7 |
|
|
|
|
|
def test_tadpole_graph_not_int_integer_inputs(self): |
|
|
|
|
|
np = pytest.importorskip("numpy") |
|
|
G = nx.tadpole_graph(np.int32(4), np.int64(3)) |
|
|
assert len(G) == 7 |
|
|
assert G.size() == 7 |
|
|
|
|
|
def test_trivial_graph(self): |
|
|
assert nx.number_of_nodes(nx.trivial_graph()) == 1 |
|
|
|
|
|
def test_turan_graph(self): |
|
|
assert nx.number_of_edges(nx.turan_graph(13, 4)) == 63 |
|
|
assert is_isomorphic( |
|
|
nx.turan_graph(13, 4), nx.complete_multipartite_graph(3, 4, 3, 3) |
|
|
) |
|
|
|
|
|
def test_wheel_graph(self): |
|
|
for n, G in [ |
|
|
("", nx.null_graph()), |
|
|
(0, nx.null_graph()), |
|
|
(1, nx.empty_graph(1)), |
|
|
(2, nx.path_graph(2)), |
|
|
(3, nx.complete_graph(3)), |
|
|
(4, nx.complete_graph(4)), |
|
|
]: |
|
|
g = nx.wheel_graph(n) |
|
|
assert is_isomorphic(g, G) |
|
|
|
|
|
g = nx.wheel_graph(10) |
|
|
assert sorted(d for n, d in g.degree()) == [3, 3, 3, 3, 3, 3, 3, 3, 3, 9] |
|
|
|
|
|
pytest.raises(nx.NetworkXError, nx.wheel_graph, 10, create_using=nx.DiGraph) |
|
|
|
|
|
mg = nx.wheel_graph(10, create_using=nx.MultiGraph()) |
|
|
assert edges_equal(mg.edges(), g.edges()) |
|
|
|
|
|
G = nx.wheel_graph("abc") |
|
|
assert len(G) == 3 |
|
|
assert G.size() == 3 |
|
|
|
|
|
G = nx.wheel_graph("abcb") |
|
|
assert len(G) == 3 |
|
|
assert G.size() == 4 |
|
|
G = nx.wheel_graph("abcb", nx.MultiGraph) |
|
|
assert len(G) == 3 |
|
|
assert G.size() == 6 |
|
|
|
|
|
def test_non_int_integers_for_wheel_graph(self): |
|
|
np = pytest.importorskip("numpy") |
|
|
G = nx.wheel_graph(np.int32(3)) |
|
|
assert len(G) == 3 |
|
|
assert G.size() == 3 |
|
|
|
|
|
def test_complete_0_partite_graph(self): |
|
|
"""Tests that the complete 0-partite graph is the null graph.""" |
|
|
G = nx.complete_multipartite_graph() |
|
|
H = nx.null_graph() |
|
|
assert nodes_equal(G, H) |
|
|
assert edges_equal(G.edges(), H.edges()) |
|
|
|
|
|
def test_complete_1_partite_graph(self): |
|
|
"""Tests that the complete 1-partite graph is the empty graph.""" |
|
|
G = nx.complete_multipartite_graph(3) |
|
|
H = nx.empty_graph(3) |
|
|
assert nodes_equal(G, H) |
|
|
assert edges_equal(G.edges(), H.edges()) |
|
|
|
|
|
def test_complete_2_partite_graph(self): |
|
|
"""Tests that the complete 2-partite graph is the complete bipartite |
|
|
graph. |
|
|
|
|
|
""" |
|
|
G = nx.complete_multipartite_graph(2, 3) |
|
|
H = nx.complete_bipartite_graph(2, 3) |
|
|
assert nodes_equal(G, H) |
|
|
assert edges_equal(G.edges(), H.edges()) |
|
|
|
|
|
def test_complete_multipartite_graph(self): |
|
|
"""Tests for generating the complete multipartite graph.""" |
|
|
G = nx.complete_multipartite_graph(2, 3, 4) |
|
|
blocks = [(0, 1), (2, 3, 4), (5, 6, 7, 8)] |
|
|
|
|
|
for block in blocks: |
|
|
for u, v in itertools.combinations_with_replacement(block, 2): |
|
|
assert v not in G[u] |
|
|
assert G.nodes[u] == G.nodes[v] |
|
|
|
|
|
for block1, block2 in itertools.combinations(blocks, 2): |
|
|
for u, v in itertools.product(block1, block2): |
|
|
assert v in G[u] |
|
|
assert G.nodes[u] != G.nodes[v] |
|
|
with pytest.raises(nx.NetworkXError, match="Negative number of nodes"): |
|
|
nx.complete_multipartite_graph(2, -3, 4) |
|
|
|