|
|
from sympy.testing.pytest import XFAIL |
|
|
from sympy.parsing.latex.lark import parse_latex_lark |
|
|
from sympy.external import import_module |
|
|
|
|
|
from sympy.concrete.products import Product |
|
|
from sympy.concrete.summations import Sum |
|
|
from sympy.core.function import Derivative, Function |
|
|
from sympy.core.numbers import E, oo, Rational |
|
|
from sympy.core.power import Pow |
|
|
from sympy.core.parameters import evaluate |
|
|
from sympy.core.relational import GreaterThan, LessThan, StrictGreaterThan, StrictLessThan, Unequality |
|
|
from sympy.core.symbol import Symbol |
|
|
from sympy.functions.combinatorial.factorials import binomial, factorial |
|
|
from sympy.functions.elementary.complexes import Abs, conjugate |
|
|
from sympy.functions.elementary.exponential import exp, log |
|
|
from sympy.functions.elementary.integers import ceiling, floor |
|
|
from sympy.functions.elementary.miscellaneous import root, sqrt, Min, Max |
|
|
from sympy.functions.elementary.trigonometric import asin, cos, csc, sec, sin, tan |
|
|
from sympy.integrals.integrals import Integral |
|
|
from sympy.series.limits import Limit |
|
|
from sympy import Matrix, MatAdd, MatMul, Transpose, Trace |
|
|
from sympy import I |
|
|
|
|
|
from sympy.core.relational import Eq, Ne, Lt, Le, Gt, Ge |
|
|
from sympy.physics.quantum import Bra, Ket, InnerProduct |
|
|
from sympy.abc import x, y, z, a, b, c, d, t, k, n |
|
|
|
|
|
from .test_latex import theta, f, _Add, _Mul, _Pow, _Sqrt, _Conjugate, _Abs, _factorial, _exp, _binomial |
|
|
|
|
|
lark = import_module("lark") |
|
|
|
|
|
|
|
|
disabled = lark is None |
|
|
|
|
|
|
|
|
def _Min(*args): |
|
|
return Min(*args, evaluate=False) |
|
|
|
|
|
|
|
|
def _Max(*args): |
|
|
return Max(*args, evaluate=False) |
|
|
|
|
|
|
|
|
def _log(a, b=E): |
|
|
if b == E: |
|
|
return log(a, evaluate=False) |
|
|
else: |
|
|
return log(a, b, evaluate=False) |
|
|
|
|
|
|
|
|
def _MatAdd(a, b): |
|
|
return MatAdd(a, b, evaluate=False) |
|
|
|
|
|
|
|
|
def _MatMul(a, b): |
|
|
return MatMul(a, b, evaluate=False) |
|
|
|
|
|
|
|
|
|
|
|
SYMBOL_EXPRESSION_PAIRS = [ |
|
|
(r"x_0", Symbol('x_{0}')), |
|
|
(r"x_{1}", Symbol('x_{1}')), |
|
|
(r"x_a", Symbol('x_{a}')), |
|
|
(r"x_{b}", Symbol('x_{b}')), |
|
|
(r"h_\theta", Symbol('h_{theta}')), |
|
|
(r"h_{\theta}", Symbol('h_{theta}')), |
|
|
(r"y''_1", Symbol("y''_{1}")), |
|
|
(r"y_1''", Symbol("y_{1}''")), |
|
|
(r"\mathit{x}", Symbol('x')), |
|
|
(r"\mathit{test}", Symbol('test')), |
|
|
(r"\mathit{TEST}", Symbol('TEST')), |
|
|
(r"\mathit{HELLO world}", Symbol('HELLO world')), |
|
|
(r"a'", Symbol("a'")), |
|
|
(r"a''", Symbol("a''")), |
|
|
(r"\alpha'", Symbol("alpha'")), |
|
|
(r"\alpha''", Symbol("alpha''")), |
|
|
(r"a_b", Symbol("a_{b}")), |
|
|
(r"a_b'", Symbol("a_{b}'")), |
|
|
(r"a'_b", Symbol("a'_{b}")), |
|
|
(r"a'_b'", Symbol("a'_{b}'")), |
|
|
(r"a_{b'}", Symbol("a_{b'}")), |
|
|
(r"a_{b'}'", Symbol("a_{b'}'")), |
|
|
(r"a'_{b'}", Symbol("a'_{b'}")), |
|
|
(r"a'_{b'}'", Symbol("a'_{b'}'")), |
|
|
(r"\mathit{foo}'", Symbol("foo'")), |
|
|
(r"\mathit{foo'}", Symbol("foo'")), |
|
|
(r"\mathit{foo'}'", Symbol("foo''")), |
|
|
(r"a_b''", Symbol("a_{b}''")), |
|
|
(r"a''_b", Symbol("a''_{b}")), |
|
|
(r"a''_b'''", Symbol("a''_{b}'''")), |
|
|
(r"a_{b''}", Symbol("a_{b''}")), |
|
|
(r"a_{b''}''", Symbol("a_{b''}''")), |
|
|
(r"a''_{b''}", Symbol("a''_{b''}")), |
|
|
(r"a''_{b''}'''", Symbol("a''_{b''}'''")), |
|
|
(r"\mathit{foo}''", Symbol("foo''")), |
|
|
(r"\mathit{foo''}", Symbol("foo''")), |
|
|
(r"\mathit{foo''}'''", Symbol("foo'''''")), |
|
|
(r"a_\alpha", Symbol("a_{alpha}")), |
|
|
(r"a_\alpha'", Symbol("a_{alpha}'")), |
|
|
(r"a'_\alpha", Symbol("a'_{alpha}")), |
|
|
(r"a'_\alpha'", Symbol("a'_{alpha}'")), |
|
|
(r"a_{\alpha'}", Symbol("a_{alpha'}")), |
|
|
(r"a_{\alpha'}'", Symbol("a_{alpha'}'")), |
|
|
(r"a'_{\alpha'}", Symbol("a'_{alpha'}")), |
|
|
(r"a'_{\alpha'}'", Symbol("a'_{alpha'}'")), |
|
|
(r"a_\alpha''", Symbol("a_{alpha}''")), |
|
|
(r"a''_\alpha", Symbol("a''_{alpha}")), |
|
|
(r"a''_\alpha'''", Symbol("a''_{alpha}'''")), |
|
|
(r"a_{\alpha''}", Symbol("a_{alpha''}")), |
|
|
(r"a_{\alpha''}''", Symbol("a_{alpha''}''")), |
|
|
(r"a''_{\alpha''}", Symbol("a''_{alpha''}")), |
|
|
(r"a''_{\alpha''}'''", Symbol("a''_{alpha''}'''")), |
|
|
(r"\alpha_b", Symbol("alpha_{b}")), |
|
|
(r"\alpha_b'", Symbol("alpha_{b}'")), |
|
|
(r"\alpha'_b", Symbol("alpha'_{b}")), |
|
|
(r"\alpha'_b'", Symbol("alpha'_{b}'")), |
|
|
(r"\alpha_{b'}", Symbol("alpha_{b'}")), |
|
|
(r"\alpha_{b'}'", Symbol("alpha_{b'}'")), |
|
|
(r"\alpha'_{b'}", Symbol("alpha'_{b'}")), |
|
|
(r"\alpha'_{b'}'", Symbol("alpha'_{b'}'")), |
|
|
(r"\alpha_b''", Symbol("alpha_{b}''")), |
|
|
(r"\alpha''_b", Symbol("alpha''_{b}")), |
|
|
(r"\alpha''_b'''", Symbol("alpha''_{b}'''")), |
|
|
(r"\alpha_{b''}", Symbol("alpha_{b''}")), |
|
|
(r"\alpha_{b''}''", Symbol("alpha_{b''}''")), |
|
|
(r"\alpha''_{b''}", Symbol("alpha''_{b''}")), |
|
|
(r"\alpha''_{b''}'''", Symbol("alpha''_{b''}'''")), |
|
|
(r"\alpha_\beta", Symbol("alpha_{beta}")), |
|
|
(r"\alpha_{\beta}", Symbol("alpha_{beta}")), |
|
|
(r"\alpha_{\beta'}", Symbol("alpha_{beta'}")), |
|
|
(r"\alpha_{\beta''}", Symbol("alpha_{beta''}")), |
|
|
(r"\alpha'_\beta", Symbol("alpha'_{beta}")), |
|
|
(r"\alpha'_{\beta}", Symbol("alpha'_{beta}")), |
|
|
(r"\alpha'_{\beta'}", Symbol("alpha'_{beta'}")), |
|
|
(r"\alpha'_{\beta''}", Symbol("alpha'_{beta''}")), |
|
|
(r"\alpha''_\beta", Symbol("alpha''_{beta}")), |
|
|
(r"\alpha''_{\beta}", Symbol("alpha''_{beta}")), |
|
|
(r"\alpha''_{\beta'}", Symbol("alpha''_{beta'}")), |
|
|
(r"\alpha''_{\beta''}", Symbol("alpha''_{beta''}")), |
|
|
(r"\alpha_\beta'", Symbol("alpha_{beta}'")), |
|
|
(r"\alpha_{\beta}'", Symbol("alpha_{beta}'")), |
|
|
(r"\alpha_{\beta'}'", Symbol("alpha_{beta'}'")), |
|
|
(r"\alpha_{\beta''}'", Symbol("alpha_{beta''}'")), |
|
|
(r"\alpha'_\beta'", Symbol("alpha'_{beta}'")), |
|
|
(r"\alpha'_{\beta}'", Symbol("alpha'_{beta}'")), |
|
|
(r"\alpha'_{\beta'}'", Symbol("alpha'_{beta'}'")), |
|
|
(r"\alpha'_{\beta''}'", Symbol("alpha'_{beta''}'")), |
|
|
(r"\alpha''_\beta'", Symbol("alpha''_{beta}'")), |
|
|
(r"\alpha''_{\beta}'", Symbol("alpha''_{beta}'")), |
|
|
(r"\alpha''_{\beta'}'", Symbol("alpha''_{beta'}'")), |
|
|
(r"\alpha''_{\beta''}'", Symbol("alpha''_{beta''}'")), |
|
|
(r"\alpha_\beta''", Symbol("alpha_{beta}''")), |
|
|
(r"\alpha_{\beta}''", Symbol("alpha_{beta}''")), |
|
|
(r"\alpha_{\beta'}''", Symbol("alpha_{beta'}''")), |
|
|
(r"\alpha_{\beta''}''", Symbol("alpha_{beta''}''")), |
|
|
(r"\alpha'_\beta''", Symbol("alpha'_{beta}''")), |
|
|
(r"\alpha'_{\beta}''", Symbol("alpha'_{beta}''")), |
|
|
(r"\alpha'_{\beta'}''", Symbol("alpha'_{beta'}''")), |
|
|
(r"\alpha'_{\beta''}''", Symbol("alpha'_{beta''}''")), |
|
|
(r"\alpha''_\beta''", Symbol("alpha''_{beta}''")), |
|
|
(r"\alpha''_{\beta}''", Symbol("alpha''_{beta}''")), |
|
|
(r"\alpha''_{\beta'}''", Symbol("alpha''_{beta'}''")), |
|
|
(r"\alpha''_{\beta''}''", Symbol("alpha''_{beta''}''")) |
|
|
|
|
|
] |
|
|
|
|
|
UNEVALUATED_SIMPLE_EXPRESSION_PAIRS = [ |
|
|
(r"0", 0), |
|
|
(r"1", 1), |
|
|
(r"-3.14", -3.14), |
|
|
(r"(-7.13)(1.5)", _Mul(-7.13, 1.5)), |
|
|
(r"1+1", _Add(1, 1)), |
|
|
(r"0+1", _Add(0, 1)), |
|
|
(r"1*2", _Mul(1, 2)), |
|
|
(r"0*1", _Mul(0, 1)), |
|
|
(r"x", x), |
|
|
(r"2x", 2 * x), |
|
|
(r"3x - 1", _Add(_Mul(3, x), -1)), |
|
|
(r"-c", -c), |
|
|
(r"\infty", oo), |
|
|
(r"a \cdot b", a * b), |
|
|
(r"1 \times 2 ", _Mul(1, 2)), |
|
|
(r"a / b", a / b), |
|
|
(r"a \div b", a / b), |
|
|
(r"a + b", a + b), |
|
|
(r"a + b - a", _Add(a + b, -a)), |
|
|
(r"(x + y) z", _Mul(_Add(x, y), z)), |
|
|
(r"a'b+ab'", _Add(_Mul(Symbol("a'"), b), _Mul(a, Symbol("b'")))) |
|
|
] |
|
|
|
|
|
EVALUATED_SIMPLE_EXPRESSION_PAIRS = [ |
|
|
(r"(-7.13)(1.5)", -10.695), |
|
|
(r"1+1", 2), |
|
|
(r"0+1", 1), |
|
|
(r"1*2", 2), |
|
|
(r"0*1", 0), |
|
|
(r"2x", 2 * x), |
|
|
(r"3x - 1", 3 * x - 1), |
|
|
(r"-c", -c), |
|
|
(r"a \cdot b", a * b), |
|
|
(r"1 \times 2 ", 2), |
|
|
(r"a / b", a / b), |
|
|
(r"a \div b", a / b), |
|
|
(r"a + b", a + b), |
|
|
(r"a + b - a", b), |
|
|
(r"(x + y) z", (x + y) * z), |
|
|
] |
|
|
|
|
|
UNEVALUATED_FRACTION_EXPRESSION_PAIRS = [ |
|
|
(r"\frac{a}{b}", a / b), |
|
|
(r"\dfrac{a}{b}", a / b), |
|
|
(r"\tfrac{a}{b}", a / b), |
|
|
(r"\frac12", _Mul(1, _Pow(2, -1))), |
|
|
(r"\frac12y", _Mul(_Mul(1, _Pow(2, -1)), y)), |
|
|
(r"\frac1234", _Mul(_Mul(1, _Pow(2, -1)), 34)), |
|
|
(r"\frac2{3}", _Mul(2, _Pow(3, -1))), |
|
|
(r"\frac{a + b}{c}", _Mul(a + b, _Pow(c, -1))), |
|
|
(r"\frac{7}{3}", _Mul(7, _Pow(3, -1))) |
|
|
] |
|
|
|
|
|
EVALUATED_FRACTION_EXPRESSION_PAIRS = [ |
|
|
(r"\frac{a}{b}", a / b), |
|
|
(r"\dfrac{a}{b}", a / b), |
|
|
(r"\tfrac{a}{b}", a / b), |
|
|
(r"\frac12", Rational(1, 2)), |
|
|
(r"\frac12y", y / 2), |
|
|
(r"\frac1234", 17), |
|
|
(r"\frac2{3}", Rational(2, 3)), |
|
|
(r"\frac{a + b}{c}", (a + b) / c), |
|
|
(r"\frac{7}{3}", Rational(7, 3)) |
|
|
] |
|
|
|
|
|
RELATION_EXPRESSION_PAIRS = [ |
|
|
(r"x = y", Eq(x, y)), |
|
|
(r"x \neq y", Ne(x, y)), |
|
|
(r"x < y", Lt(x, y)), |
|
|
(r"x > y", Gt(x, y)), |
|
|
(r"x \leq y", Le(x, y)), |
|
|
(r"x \geq y", Ge(x, y)), |
|
|
(r"x \le y", Le(x, y)), |
|
|
(r"x \ge y", Ge(x, y)), |
|
|
(r"x < y", StrictLessThan(x, y)), |
|
|
(r"x \leq y", LessThan(x, y)), |
|
|
(r"x > y", StrictGreaterThan(x, y)), |
|
|
(r"x \geq y", GreaterThan(x, y)), |
|
|
(r"x \neq y", Unequality(x, y)), |
|
|
(r"a^2 + b^2 = c^2", Eq(a**2 + b**2, c**2)) |
|
|
] |
|
|
|
|
|
UNEVALUATED_POWER_EXPRESSION_PAIRS = [ |
|
|
(r"x^2", x ** 2), |
|
|
(r"x^\frac{1}{2}", _Pow(x, _Mul(1, _Pow(2, -1)))), |
|
|
(r"x^{3 + 1}", x ** _Add(3, 1)), |
|
|
(r"\pi^{|xy|}", Symbol('pi') ** _Abs(x * y)), |
|
|
(r"5^0 - 4^0", _Add(_Pow(5, 0), _Mul(-1, _Pow(4, 0)))) |
|
|
] |
|
|
|
|
|
EVALUATED_POWER_EXPRESSION_PAIRS = [ |
|
|
(r"x^2", x ** 2), |
|
|
(r"x^\frac{1}{2}", sqrt(x)), |
|
|
(r"x^{3 + 1}", x ** 4), |
|
|
(r"\pi^{|xy|}", Symbol('pi') ** _Abs(x * y)), |
|
|
(r"5^0 - 4^0", 0) |
|
|
] |
|
|
|
|
|
UNEVALUATED_INTEGRAL_EXPRESSION_PAIRS = [ |
|
|
(r"\int x dx", Integral(_Mul(1, x), x)), |
|
|
(r"\int x \, dx", Integral(_Mul(1, x), x)), |
|
|
(r"\int x d\theta", Integral(_Mul(1, x), theta)), |
|
|
(r"\int (x^2 - y)dx", Integral(_Mul(1, x ** 2 - y), x)), |
|
|
(r"\int x + a dx", Integral(_Mul(1, _Add(x, a)), x)), |
|
|
(r"\int da", Integral(_Mul(1, 1), a)), |
|
|
(r"\int_0^7 dx", Integral(_Mul(1, 1), (x, 0, 7))), |
|
|
(r"\int\limits_{0}^{1} x dx", Integral(_Mul(1, x), (x, 0, 1))), |
|
|
(r"\int_a^b x dx", Integral(_Mul(1, x), (x, a, b))), |
|
|
(r"\int^b_a x dx", Integral(_Mul(1, x), (x, a, b))), |
|
|
(r"\int_{a}^b x dx", Integral(_Mul(1, x), (x, a, b))), |
|
|
(r"\int^{b}_a x dx", Integral(_Mul(1, x), (x, a, b))), |
|
|
(r"\int_{a}^{b} x dx", Integral(_Mul(1, x), (x, a, b))), |
|
|
(r"\int^{b}_{a} x dx", Integral(_Mul(1, x), (x, a, b))), |
|
|
(r"\int_{f(a)}^{f(b)} f(z) dz", Integral(f(z), (z, f(a), f(b)))), |
|
|
(r"\int a + b + c dx", Integral(_Mul(1, _Add(_Add(a, b), c)), x)), |
|
|
(r"\int \frac{dz}{z}", Integral(_Mul(1, _Mul(1, Pow(z, -1))), z)), |
|
|
(r"\int \frac{3 dz}{z}", Integral(_Mul(1, _Mul(3, _Pow(z, -1))), z)), |
|
|
(r"\int \frac{1}{x} dx", Integral(_Mul(1, _Mul(1, Pow(x, -1))), x)), |
|
|
(r"\int \frac{1}{a} + \frac{1}{b} dx", |
|
|
Integral(_Mul(1, _Add(_Mul(1, _Pow(a, -1)), _Mul(1, Pow(b, -1)))), x)), |
|
|
(r"\int \frac{1}{x} + 1 dx", Integral(_Mul(1, _Add(_Mul(1, _Pow(x, -1)), 1)), x)) |
|
|
] |
|
|
|
|
|
EVALUATED_INTEGRAL_EXPRESSION_PAIRS = [ |
|
|
(r"\int x dx", Integral(x, x)), |
|
|
(r"\int x \, dx", Integral(x, x)), |
|
|
(r"\int x d\theta", Integral(x, theta)), |
|
|
(r"\int (x^2 - y)dx", Integral(x ** 2 - y, x)), |
|
|
(r"\int x + a dx", Integral(x + a, x)), |
|
|
(r"\int da", Integral(1, a)), |
|
|
(r"\int_0^7 dx", Integral(1, (x, 0, 7))), |
|
|
(r"\int\limits_{0}^{1} x dx", Integral(x, (x, 0, 1))), |
|
|
(r"\int_a^b x dx", Integral(x, (x, a, b))), |
|
|
(r"\int^b_a x dx", Integral(x, (x, a, b))), |
|
|
(r"\int_{a}^b x dx", Integral(x, (x, a, b))), |
|
|
(r"\int^{b}_a x dx", Integral(x, (x, a, b))), |
|
|
(r"\int_{a}^{b} x dx", Integral(x, (x, a, b))), |
|
|
(r"\int^{b}_{a} x dx", Integral(x, (x, a, b))), |
|
|
(r"\int_{f(a)}^{f(b)} f(z) dz", Integral(f(z), (z, f(a), f(b)))), |
|
|
(r"\int a + b + c dx", Integral(a + b + c, x)), |
|
|
(r"\int \frac{dz}{z}", Integral(Pow(z, -1), z)), |
|
|
(r"\int \frac{3 dz}{z}", Integral(3 * Pow(z, -1), z)), |
|
|
(r"\int \frac{1}{x} dx", Integral(1 / x, x)), |
|
|
(r"\int \frac{1}{a} + \frac{1}{b} dx", Integral(1 / a + 1 / b, x)), |
|
|
(r"\int \frac{1}{a} - \frac{1}{b} dx", Integral(1 / a - 1 / b, x)), |
|
|
(r"\int \frac{1}{x} + 1 dx", Integral(1 / x + 1, x)) |
|
|
] |
|
|
|
|
|
DERIVATIVE_EXPRESSION_PAIRS = [ |
|
|
(r"\frac{d}{dx} x", Derivative(x, x)), |
|
|
(r"\frac{d}{dt} x", Derivative(x, t)), |
|
|
(r"\frac{d}{dx} ( \tan x )", Derivative(tan(x), x)), |
|
|
(r"\frac{d f(x)}{dx}", Derivative(f(x), x)), |
|
|
(r"\frac{d\theta(x)}{dx}", Derivative(Function('theta')(x), x)) |
|
|
] |
|
|
|
|
|
TRIGONOMETRIC_EXPRESSION_PAIRS = [ |
|
|
(r"\sin \theta", sin(theta)), |
|
|
(r"\sin(\theta)", sin(theta)), |
|
|
(r"\sin^{-1} a", asin(a)), |
|
|
(r"\sin a \cos b", _Mul(sin(a), cos(b))), |
|
|
(r"\sin \cos \theta", sin(cos(theta))), |
|
|
(r"\sin(\cos \theta)", sin(cos(theta))), |
|
|
(r"(\csc x)(\sec y)", csc(x) * sec(y)), |
|
|
(r"\frac{\sin{x}}2", _Mul(sin(x), _Pow(2, -1))) |
|
|
] |
|
|
|
|
|
UNEVALUATED_LIMIT_EXPRESSION_PAIRS = [ |
|
|
(r"\lim_{x \to 3} a", Limit(a, x, 3, dir="+-")), |
|
|
(r"\lim_{x \rightarrow 3} a", Limit(a, x, 3, dir="+-")), |
|
|
(r"\lim_{x \Rightarrow 3} a", Limit(a, x, 3, dir="+-")), |
|
|
(r"\lim_{x \longrightarrow 3} a", Limit(a, x, 3, dir="+-")), |
|
|
(r"\lim_{x \Longrightarrow 3} a", Limit(a, x, 3, dir="+-")), |
|
|
(r"\lim_{x \to 3^{+}} a", Limit(a, x, 3, dir="+")), |
|
|
(r"\lim_{x \to 3^{-}} a", Limit(a, x, 3, dir="-")), |
|
|
(r"\lim_{x \to 3^+} a", Limit(a, x, 3, dir="+")), |
|
|
(r"\lim_{x \to 3^-} a", Limit(a, x, 3, dir="-")), |
|
|
(r"\lim_{x \to \infty} \frac{1}{x}", Limit(_Mul(1, _Pow(x, -1)), x, oo)) |
|
|
] |
|
|
|
|
|
EVALUATED_LIMIT_EXPRESSION_PAIRS = [ |
|
|
(r"\lim_{x \to \infty} \frac{1}{x}", Limit(1 / x, x, oo)) |
|
|
] |
|
|
|
|
|
UNEVALUATED_SQRT_EXPRESSION_PAIRS = [ |
|
|
(r"\sqrt{x}", sqrt(x)), |
|
|
(r"\sqrt{x + b}", sqrt(_Add(x, b))), |
|
|
(r"\sqrt[3]{\sin x}", _Pow(sin(x), _Pow(3, -1))), |
|
|
|
|
|
|
|
|
(r"\sqrt[y]{\sin x}", root(sin(x), y)), |
|
|
(r"\sqrt[\theta]{\sin x}", root(sin(x), theta)), |
|
|
(r"\sqrt{\frac{12}{6}}", _Sqrt(_Mul(12, _Pow(6, -1)))) |
|
|
] |
|
|
|
|
|
EVALUATED_SQRT_EXPRESSION_PAIRS = [ |
|
|
(r"\sqrt{x}", sqrt(x)), |
|
|
(r"\sqrt{x + b}", sqrt(x + b)), |
|
|
(r"\sqrt[3]{\sin x}", root(sin(x), 3)), |
|
|
(r"\sqrt[y]{\sin x}", root(sin(x), y)), |
|
|
(r"\sqrt[\theta]{\sin x}", root(sin(x), theta)), |
|
|
(r"\sqrt{\frac{12}{6}}", sqrt(2)) |
|
|
] |
|
|
|
|
|
UNEVALUATED_FACTORIAL_EXPRESSION_PAIRS = [ |
|
|
(r"x!", _factorial(x)), |
|
|
(r"100!", _factorial(100)), |
|
|
(r"\theta!", _factorial(theta)), |
|
|
(r"(x + 1)!", _factorial(_Add(x, 1))), |
|
|
(r"(x!)!", _factorial(_factorial(x))), |
|
|
(r"x!!!", _factorial(_factorial(_factorial(x)))), |
|
|
(r"5!7!", _Mul(_factorial(5), _factorial(7))) |
|
|
] |
|
|
|
|
|
EVALUATED_FACTORIAL_EXPRESSION_PAIRS = [ |
|
|
(r"x!", factorial(x)), |
|
|
(r"100!", factorial(100)), |
|
|
(r"\theta!", factorial(theta)), |
|
|
(r"(x + 1)!", factorial(x + 1)), |
|
|
(r"(x!)!", factorial(factorial(x))), |
|
|
(r"x!!!", factorial(factorial(factorial(x)))), |
|
|
(r"5!7!", factorial(5) * factorial(7)), |
|
|
(r"24! \times 24!", factorial(24) * factorial(24)) |
|
|
] |
|
|
|
|
|
UNEVALUATED_SUM_EXPRESSION_PAIRS = [ |
|
|
(r"\sum_{k = 1}^{3} c", Sum(_Mul(1, c), (k, 1, 3))), |
|
|
(r"\sum_{k = 1}^3 c", Sum(_Mul(1, c), (k, 1, 3))), |
|
|
(r"\sum^{3}_{k = 1} c", Sum(_Mul(1, c), (k, 1, 3))), |
|
|
(r"\sum^3_{k = 1} c", Sum(_Mul(1, c), (k, 1, 3))), |
|
|
(r"\sum_{k = 1}^{10} k^2", Sum(_Mul(1, k ** 2), (k, 1, 10))), |
|
|
(r"\sum_{n = 0}^{\infty} \frac{1}{n!}", |
|
|
Sum(_Mul(1, _Mul(1, _Pow(_factorial(n), -1))), (n, 0, oo))) |
|
|
] |
|
|
|
|
|
EVALUATED_SUM_EXPRESSION_PAIRS = [ |
|
|
(r"\sum_{k = 1}^{3} c", Sum(c, (k, 1, 3))), |
|
|
(r"\sum_{k = 1}^3 c", Sum(c, (k, 1, 3))), |
|
|
(r"\sum^{3}_{k = 1} c", Sum(c, (k, 1, 3))), |
|
|
(r"\sum^3_{k = 1} c", Sum(c, (k, 1, 3))), |
|
|
(r"\sum_{k = 1}^{10} k^2", Sum(k ** 2, (k, 1, 10))), |
|
|
(r"\sum_{n = 0}^{\infty} \frac{1}{n!}", Sum(1 / factorial(n), (n, 0, oo))) |
|
|
] |
|
|
|
|
|
UNEVALUATED_PRODUCT_EXPRESSION_PAIRS = [ |
|
|
(r"\prod_{a = b}^{c} x", Product(x, (a, b, c))), |
|
|
(r"\prod_{a = b}^c x", Product(x, (a, b, c))), |
|
|
(r"\prod^{c}_{a = b} x", Product(x, (a, b, c))), |
|
|
(r"\prod^c_{a = b} x", Product(x, (a, b, c))) |
|
|
] |
|
|
|
|
|
APPLIED_FUNCTION_EXPRESSION_PAIRS = [ |
|
|
(r"f(x)", f(x)), |
|
|
(r"f(x, y)", f(x, y)), |
|
|
(r"f(x, y, z)", f(x, y, z)), |
|
|
(r"f'_1(x)", Function("f_{1}'")(x)), |
|
|
(r"f_{1}''(x+y)", Function("f_{1}''")(x + y)), |
|
|
(r"h_{\theta}(x_0, x_1)", |
|
|
Function('h_{theta}')(Symbol('x_{0}'), Symbol('x_{1}'))) |
|
|
] |
|
|
|
|
|
UNEVALUATED_COMMON_FUNCTION_EXPRESSION_PAIRS = [ |
|
|
(r"|x|", _Abs(x)), |
|
|
(r"||x||", _Abs(Abs(x))), |
|
|
(r"|x||y|", _Abs(x) * _Abs(y)), |
|
|
(r"||x||y||", _Abs(_Abs(x) * _Abs(y))), |
|
|
(r"\lfloor x \rfloor", floor(x)), |
|
|
(r"\lceil x \rceil", ceiling(x)), |
|
|
(r"\exp x", _exp(x)), |
|
|
(r"\exp(x)", _exp(x)), |
|
|
(r"\lg x", _log(x, 10)), |
|
|
(r"\ln x", _log(x)), |
|
|
(r"\ln xy", _log(x * y)), |
|
|
(r"\log x", _log(x)), |
|
|
(r"\log xy", _log(x * y)), |
|
|
(r"\log_{2} x", _log(x, 2)), |
|
|
(r"\log_{a} x", _log(x, a)), |
|
|
(r"\log_{11} x", _log(x, 11)), |
|
|
(r"\log_{a^2} x", _log(x, _Pow(a, 2))), |
|
|
(r"\log_2 x", _log(x, 2)), |
|
|
(r"\log_a x", _log(x, a)), |
|
|
(r"\overline{z}", _Conjugate(z)), |
|
|
(r"\overline{\overline{z}}", _Conjugate(_Conjugate(z))), |
|
|
(r"\overline{x + y}", _Conjugate(_Add(x, y))), |
|
|
(r"\overline{x} + \overline{y}", _Conjugate(x) + _Conjugate(y)), |
|
|
(r"\min(a, b)", _Min(a, b)), |
|
|
(r"\min(a, b, c - d, xy)", _Min(a, b, c - d, x * y)), |
|
|
(r"\max(a, b)", _Max(a, b)), |
|
|
(r"\max(a, b, c - d, xy)", _Max(a, b, c - d, x * y)), |
|
|
|
|
|
(r"\langle x |", Bra('x')), |
|
|
(r"| x \rangle", Ket('x')), |
|
|
(r"\langle x | y \rangle", InnerProduct(Bra('x'), Ket('y'))), |
|
|
] |
|
|
|
|
|
EVALUATED_COMMON_FUNCTION_EXPRESSION_PAIRS = [ |
|
|
(r"|x|", Abs(x)), |
|
|
(r"||x||", Abs(Abs(x))), |
|
|
(r"|x||y|", Abs(x) * Abs(y)), |
|
|
(r"||x||y||", Abs(Abs(x) * Abs(y))), |
|
|
(r"\lfloor x \rfloor", floor(x)), |
|
|
(r"\lceil x \rceil", ceiling(x)), |
|
|
(r"\exp x", exp(x)), |
|
|
(r"\exp(x)", exp(x)), |
|
|
(r"\lg x", log(x, 10)), |
|
|
(r"\ln x", log(x)), |
|
|
(r"\ln xy", log(x * y)), |
|
|
(r"\log x", log(x)), |
|
|
(r"\log xy", log(x * y)), |
|
|
(r"\log_{2} x", log(x, 2)), |
|
|
(r"\log_{a} x", log(x, a)), |
|
|
(r"\log_{11} x", log(x, 11)), |
|
|
(r"\log_{a^2} x", log(x, _Pow(a, 2))), |
|
|
(r"\log_2 x", log(x, 2)), |
|
|
(r"\log_a x", log(x, a)), |
|
|
(r"\overline{z}", conjugate(z)), |
|
|
(r"\overline{\overline{z}}", conjugate(conjugate(z))), |
|
|
(r"\overline{x + y}", conjugate(x + y)), |
|
|
(r"\overline{x} + \overline{y}", conjugate(x) + conjugate(y)), |
|
|
(r"\min(a, b)", Min(a, b)), |
|
|
(r"\min(a, b, c - d, xy)", Min(a, b, c - d, x * y)), |
|
|
(r"\max(a, b)", Max(a, b)), |
|
|
(r"\max(a, b, c - d, xy)", Max(a, b, c - d, x * y)), |
|
|
(r"\langle x |", Bra('x')), |
|
|
(r"| x \rangle", Ket('x')), |
|
|
(r"\langle x | y \rangle", InnerProduct(Bra('x'), Ket('y'))), |
|
|
] |
|
|
|
|
|
SPACING_RELATED_EXPRESSION_PAIRS = [ |
|
|
(r"a \, b", _Mul(a, b)), |
|
|
(r"a \thinspace b", _Mul(a, b)), |
|
|
(r"a \: b", _Mul(a, b)), |
|
|
(r"a \medspace b", _Mul(a, b)), |
|
|
(r"a \; b", _Mul(a, b)), |
|
|
(r"a \thickspace b", _Mul(a, b)), |
|
|
(r"a \quad b", _Mul(a, b)), |
|
|
(r"a \qquad b", _Mul(a, b)), |
|
|
(r"a \! b", _Mul(a, b)), |
|
|
(r"a \negthinspace b", _Mul(a, b)), |
|
|
(r"a \negmedspace b", _Mul(a, b)), |
|
|
(r"a \negthickspace b", _Mul(a, b)) |
|
|
] |
|
|
|
|
|
UNEVALUATED_BINOMIAL_EXPRESSION_PAIRS = [ |
|
|
(r"\binom{n}{k}", _binomial(n, k)), |
|
|
(r"\tbinom{n}{k}", _binomial(n, k)), |
|
|
(r"\dbinom{n}{k}", _binomial(n, k)), |
|
|
(r"\binom{n}{0}", _binomial(n, 0)), |
|
|
(r"x^\binom{n}{k}", _Pow(x, _binomial(n, k))) |
|
|
] |
|
|
|
|
|
EVALUATED_BINOMIAL_EXPRESSION_PAIRS = [ |
|
|
(r"\binom{n}{k}", binomial(n, k)), |
|
|
(r"\tbinom{n}{k}", binomial(n, k)), |
|
|
(r"\dbinom{n}{k}", binomial(n, k)), |
|
|
(r"\binom{n}{0}", binomial(n, 0)), |
|
|
(r"x^\binom{n}{k}", x ** binomial(n, k)) |
|
|
] |
|
|
|
|
|
MISCELLANEOUS_EXPRESSION_PAIRS = [ |
|
|
(r"\left(x + y\right) z", _Mul(_Add(x, y), z)), |
|
|
(r"\left( x + y\right ) z", _Mul(_Add(x, y), z)), |
|
|
(r"\left( x + y\right ) z", _Mul(_Add(x, y), z)), |
|
|
] |
|
|
|
|
|
UNEVALUATED_LITERAL_COMPLEX_NUMBER_EXPRESSION_PAIRS = [ |
|
|
(r"\imaginaryunit^2", _Pow(I, 2)), |
|
|
(r"|\imaginaryunit|", _Abs(I)), |
|
|
(r"\overline{\imaginaryunit}", _Conjugate(I)), |
|
|
(r"\imaginaryunit+\imaginaryunit", _Add(I, I)), |
|
|
(r"\imaginaryunit-\imaginaryunit", _Add(I, -I)), |
|
|
(r"\imaginaryunit*\imaginaryunit", _Mul(I, I)), |
|
|
(r"\imaginaryunit/\imaginaryunit", _Mul(I, _Pow(I, -1))), |
|
|
(r"(1+\imaginaryunit)/|1+\imaginaryunit|", _Mul(_Add(1, I), _Pow(_Abs(_Add(1, I)), -1))) |
|
|
] |
|
|
|
|
|
UNEVALUATED_MATRIX_EXPRESSION_PAIRS = [ |
|
|
(r"\begin{pmatrix}a & b \\x & y\end{pmatrix}", |
|
|
Matrix([[a, b], [x, y]])), |
|
|
(r"\begin{pmatrix}a & b \\x & y\\\end{pmatrix}", |
|
|
Matrix([[a, b], [x, y]])), |
|
|
(r"\begin{bmatrix}a & b \\x & y\end{bmatrix}", |
|
|
Matrix([[a, b], [x, y]])), |
|
|
(r"\left(\begin{matrix}a & b \\x & y\end{matrix}\right)", |
|
|
Matrix([[a, b], [x, y]])), |
|
|
(r"\left[\begin{matrix}a & b \\x & y\end{matrix}\right]", |
|
|
Matrix([[a, b], [x, y]])), |
|
|
(r"\left[\begin{array}{cc}a & b \\x & y\end{array}\right]", |
|
|
Matrix([[a, b], [x, y]])), |
|
|
(r"\left(\begin{array}{cc}a & b \\x & y\end{array}\right)", |
|
|
Matrix([[a, b], [x, y]])), |
|
|
(r"\left( { \begin{array}{cc}a & b \\x & y\end{array} } \right)", |
|
|
Matrix([[a, b], [x, y]])), |
|
|
(r"+\begin{pmatrix}a & b \\x & y\end{pmatrix}", |
|
|
Matrix([[a, b], [x, y]])), |
|
|
((r"\begin{pmatrix}x & y \\a & b\end{pmatrix}+" |
|
|
r"\begin{pmatrix}a & b \\x & y\end{pmatrix}"), |
|
|
_MatAdd(Matrix([[x, y], [a, b]]), Matrix([[a, b], [x, y]]))), |
|
|
(r"-\begin{pmatrix}a & b \\x & y\end{pmatrix}", |
|
|
_MatMul(-1, Matrix([[a, b], [x, y]]))), |
|
|
((r"\begin{pmatrix}x & y \\a & b\end{pmatrix}-" |
|
|
r"\begin{pmatrix}a & b \\x & y\end{pmatrix}"), |
|
|
_MatAdd(Matrix([[x, y], [a, b]]), _MatMul(-1, Matrix([[a, b], [x, y]])))), |
|
|
((r"\begin{pmatrix}a & b & c \\x & y & z \\a & b & c \end{pmatrix}*" |
|
|
r"\begin{pmatrix}x & y & z \\a & b & c \\a & b & c \end{pmatrix}*" |
|
|
r"\begin{pmatrix}a & b & c \\x & y & z \\x & y & z \end{pmatrix}"), |
|
|
_MatMul(_MatMul(Matrix([[a, b, c], [x, y, z], [a, b, c]]), |
|
|
Matrix([[x, y, z], [a, b, c], [a, b, c]])), |
|
|
Matrix([[a, b, c], [x, y, z], [x, y, z]]))), |
|
|
(r"\begin{pmatrix}a & b \\x & y\end{pmatrix}/2", |
|
|
_MatMul(Matrix([[a, b], [x, y]]), _Pow(2, -1))), |
|
|
(r"\begin{pmatrix}a & b \\x & y\end{pmatrix}^2", |
|
|
_Pow(Matrix([[a, b], [x, y]]), 2)), |
|
|
(r"\begin{pmatrix}a & b \\x & y\end{pmatrix}^{-1}", |
|
|
_Pow(Matrix([[a, b], [x, y]]), -1)), |
|
|
(r"\begin{pmatrix}a & b \\x & y\end{pmatrix}^T", |
|
|
Transpose(Matrix([[a, b], [x, y]]))), |
|
|
(r"\begin{pmatrix}a & b \\x & y\end{pmatrix}^{T}", |
|
|
Transpose(Matrix([[a, b], [x, y]]))), |
|
|
(r"\begin{pmatrix}a & b \\x & y\end{pmatrix}^\mathit{T}", |
|
|
Transpose(Matrix([[a, b], [x, y]]))), |
|
|
(r"\begin{pmatrix}1 & 2 \\3 & 4\end{pmatrix}^T", |
|
|
Transpose(Matrix([[1, 2], [3, 4]]))), |
|
|
((r"(\begin{pmatrix}1 & 2 \\3 & 4\end{pmatrix}+" |
|
|
r"\begin{pmatrix}1 & 2 \\3 & 4\end{pmatrix}^T)*" |
|
|
r"\begin{bmatrix}1\\0\end{bmatrix}"), |
|
|
_MatMul(_MatAdd(Matrix([[1, 2], [3, 4]]), |
|
|
Transpose(Matrix([[1, 2], [3, 4]]))), |
|
|
Matrix([[1], [0]]))), |
|
|
((r"(\begin{pmatrix}a & b \\x & y\end{pmatrix}+" |
|
|
r"\begin{pmatrix}x & y \\a & b\end{pmatrix})^2"), |
|
|
_Pow(_MatAdd(Matrix([[a, b], [x, y]]), |
|
|
Matrix([[x, y], [a, b]])), 2)), |
|
|
((r"(\begin{pmatrix}a & b \\x & y\end{pmatrix}+" |
|
|
r"\begin{pmatrix}x & y \\a & b\end{pmatrix})^T"), |
|
|
Transpose(_MatAdd(Matrix([[a, b], [x, y]]), |
|
|
Matrix([[x, y], [a, b]])))), |
|
|
(r"\overline{\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}}", |
|
|
_Conjugate(_MatAdd(Matrix([[I, 2], [3, 4]]), |
|
|
Matrix([[I, 2], [3, 4]])))) |
|
|
] |
|
|
|
|
|
EVALUATED_MATRIX_EXPRESSION_PAIRS = [ |
|
|
(r"\det\left(\left[ { \begin{array}{cc}a&b\\x&y\end{array} } \right]\right)", |
|
|
Matrix([[a, b], [x, y]]).det()), |
|
|
(r"\det \begin{pmatrix}1&2\\3&4\end{pmatrix}", -2), |
|
|
(r"\det{\begin{pmatrix}1&2\\3&4\end{pmatrix}}", -2), |
|
|
(r"\det(\begin{pmatrix}1&2\\3&4\end{pmatrix})", -2), |
|
|
(r"\det\left(\begin{pmatrix}1&2\\3&4\end{pmatrix}\right)", -2), |
|
|
(r"\begin{pmatrix}a & b \\x & y\end{pmatrix}/\begin{vmatrix}a & b \\x & y\end{vmatrix}", |
|
|
_MatMul(Matrix([[a, b], [x, y]]), _Pow(Matrix([[a, b], [x, y]]).det(), -1))), |
|
|
(r"\begin{pmatrix}a & b \\x & y\end{pmatrix}/|\begin{matrix}a & b \\x & y\end{matrix}|", |
|
|
_MatMul(Matrix([[a, b], [x, y]]), _Pow(Matrix([[a, b], [x, y]]).det(), -1))), |
|
|
(r"\frac{\begin{pmatrix}a & b \\x & y\end{pmatrix}}{| { \begin{matrix}a & b \\x & y\end{matrix} } |}", |
|
|
_MatMul(Matrix([[a, b], [x, y]]), _Pow(Matrix([[a, b], [x, y]]).det(), -1))), |
|
|
(r"\overline{\begin{pmatrix}\imaginaryunit & 1+\imaginaryunit \\-\imaginaryunit & 4\end{pmatrix}}", |
|
|
Matrix([[-I, 1-I], [I, 4]])), |
|
|
(r"\begin{pmatrix}\imaginaryunit & 1+\imaginaryunit \\-\imaginaryunit & 4\end{pmatrix}^H", |
|
|
Matrix([[-I, I], [1-I, 4]])), |
|
|
(r"\trace(\begin{pmatrix}\imaginaryunit & 1+\imaginaryunit \\-\imaginaryunit & 4\end{pmatrix})", |
|
|
Trace(Matrix([[I, 1+I], [-I, 4]]))), |
|
|
(r"\adjugate(\begin{pmatrix}1 & 2 \\3 & 4\end{pmatrix})", |
|
|
Matrix([[4, -2], [-3, 1]])), |
|
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^\ast", |
|
|
Matrix([[-2*I, 6], [4, 8]])), |
|
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\ast}", |
|
|
Matrix([[-2*I, 6], [4, 8]])), |
|
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\ast\ast}", |
|
|
Matrix([[2*I, 4], [6, 8]])), |
|
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\ast\ast\ast}", |
|
|
Matrix([[-2*I, 6], [4, 8]])), |
|
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{*}", |
|
|
Matrix([[-2*I, 6], [4, 8]])), |
|
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{**}", |
|
|
Matrix([[2*I, 4], [6, 8]])), |
|
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{***}", |
|
|
Matrix([[-2*I, 6], [4, 8]])), |
|
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^\prime", |
|
|
Transpose(_MatAdd(Matrix([[I, 2], [3, 4]]), |
|
|
Matrix([[I, 2], [3, 4]])))), |
|
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\prime}", |
|
|
Transpose(_MatAdd(Matrix([[I, 2], [3, 4]]), |
|
|
Matrix([[I, 2], [3, 4]])))), |
|
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\prime\prime}", |
|
|
_MatAdd(Matrix([[I, 2], [3, 4]]), |
|
|
Matrix([[I, 2], [3, 4]]))), |
|
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\prime\prime\prime}", |
|
|
Transpose(_MatAdd(Matrix([[I, 2], [3, 4]]), |
|
|
Matrix([[I, 2], [3, 4]])))), |
|
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{'}", |
|
|
Transpose(_MatAdd(Matrix([[I, 2], [3, 4]]), |
|
|
Matrix([[I, 2], [3, 4]])))), |
|
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{''}", |
|
|
_MatAdd(Matrix([[I, 2], [3, 4]]), |
|
|
Matrix([[I, 2], [3, 4]]))), |
|
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{'''}", |
|
|
Transpose(_MatAdd(Matrix([[I, 2], [3, 4]]), |
|
|
Matrix([[I, 2], [3, 4]])))), |
|
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})'", |
|
|
Transpose(_MatAdd(Matrix([[I, 2], [3, 4]]), |
|
|
Matrix([[I, 2], [3, 4]])))), |
|
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})''", |
|
|
_MatAdd(Matrix([[I, 2], [3, 4]]), |
|
|
Matrix([[I, 2], [3, 4]]))), |
|
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})'''", |
|
|
Transpose(_MatAdd(Matrix([[I, 2], [3, 4]]), |
|
|
Matrix([[I, 2], [3, 4]])))), |
|
|
(r"\det(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})", |
|
|
(_MatAdd(Matrix([[I, 2], [3, 4]]), |
|
|
Matrix([[I, 2], [3, 4]]))).det()), |
|
|
(r"\trace(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})", |
|
|
Trace(_MatAdd(Matrix([[I, 2], [3, 4]]), |
|
|
Matrix([[I, 2], [3, 4]])))), |
|
|
(r"\adjugate(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})", |
|
|
(Matrix([[8, -4], [-6, 2*I]]))), |
|
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^T", |
|
|
Transpose(_MatAdd(Matrix([[I, 2], [3, 4]]), |
|
|
Matrix([[I, 2], [3, 4]])))), |
|
|
(r"(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^H", |
|
|
(Matrix([[-2*I, 6], [4, 8]]))) |
|
|
] |
|
|
|
|
|
|
|
|
def test_symbol_expressions(): |
|
|
expected_failures = {6, 7} |
|
|
for i, (latex_str, sympy_expr) in enumerate(SYMBOL_EXPRESSION_PAIRS): |
|
|
if i in expected_failures: |
|
|
continue |
|
|
with evaluate(False): |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
|
|
|
def test_simple_expressions(): |
|
|
expected_failures = {20} |
|
|
for i, (latex_str, sympy_expr) in enumerate(UNEVALUATED_SIMPLE_EXPRESSION_PAIRS): |
|
|
if i in expected_failures: |
|
|
continue |
|
|
with evaluate(False): |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
for i, (latex_str, sympy_expr) in enumerate(EVALUATED_SIMPLE_EXPRESSION_PAIRS): |
|
|
if i in expected_failures: |
|
|
continue |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
|
|
|
def test_fraction_expressions(): |
|
|
for latex_str, sympy_expr in UNEVALUATED_FRACTION_EXPRESSION_PAIRS: |
|
|
with evaluate(False): |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
for latex_str, sympy_expr in EVALUATED_FRACTION_EXPRESSION_PAIRS: |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
|
|
|
def test_relation_expressions(): |
|
|
for latex_str, sympy_expr in RELATION_EXPRESSION_PAIRS: |
|
|
with evaluate(False): |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
def test_power_expressions(): |
|
|
expected_failures = {3} |
|
|
for i, (latex_str, sympy_expr) in enumerate(UNEVALUATED_POWER_EXPRESSION_PAIRS): |
|
|
if i in expected_failures: |
|
|
continue |
|
|
with evaluate(False): |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
for i, (latex_str, sympy_expr) in enumerate(EVALUATED_POWER_EXPRESSION_PAIRS): |
|
|
if i in expected_failures: |
|
|
continue |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
|
|
|
def test_integral_expressions(): |
|
|
expected_failures = {14} |
|
|
for i, (latex_str, sympy_expr) in enumerate(UNEVALUATED_INTEGRAL_EXPRESSION_PAIRS): |
|
|
if i in expected_failures: |
|
|
continue |
|
|
with evaluate(False): |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, i |
|
|
|
|
|
for i, (latex_str, sympy_expr) in enumerate(EVALUATED_INTEGRAL_EXPRESSION_PAIRS): |
|
|
if i in expected_failures: |
|
|
continue |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
|
|
|
def test_derivative_expressions(): |
|
|
expected_failures = {3, 4} |
|
|
for i, (latex_str, sympy_expr) in enumerate(DERIVATIVE_EXPRESSION_PAIRS): |
|
|
if i in expected_failures: |
|
|
continue |
|
|
with evaluate(False): |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
for i, (latex_str, sympy_expr) in enumerate(DERIVATIVE_EXPRESSION_PAIRS): |
|
|
if i in expected_failures: |
|
|
continue |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
|
|
|
def test_trigonometric_expressions(): |
|
|
expected_failures = {3} |
|
|
for i, (latex_str, sympy_expr) in enumerate(TRIGONOMETRIC_EXPRESSION_PAIRS): |
|
|
if i in expected_failures: |
|
|
continue |
|
|
with evaluate(False): |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
|
|
|
def test_limit_expressions(): |
|
|
for latex_str, sympy_expr in UNEVALUATED_LIMIT_EXPRESSION_PAIRS: |
|
|
with evaluate(False): |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
|
|
|
def test_square_root_expressions(): |
|
|
for latex_str, sympy_expr in UNEVALUATED_SQRT_EXPRESSION_PAIRS: |
|
|
with evaluate(False): |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
for latex_str, sympy_expr in EVALUATED_SQRT_EXPRESSION_PAIRS: |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
|
|
|
def test_factorial_expressions(): |
|
|
for latex_str, sympy_expr in UNEVALUATED_FACTORIAL_EXPRESSION_PAIRS: |
|
|
with evaluate(False): |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
for latex_str, sympy_expr in EVALUATED_FACTORIAL_EXPRESSION_PAIRS: |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
|
|
|
def test_sum_expressions(): |
|
|
for latex_str, sympy_expr in UNEVALUATED_SUM_EXPRESSION_PAIRS: |
|
|
with evaluate(False): |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
for latex_str, sympy_expr in EVALUATED_SUM_EXPRESSION_PAIRS: |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
|
|
|
def test_product_expressions(): |
|
|
for latex_str, sympy_expr in UNEVALUATED_PRODUCT_EXPRESSION_PAIRS: |
|
|
with evaluate(False): |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
@XFAIL |
|
|
def test_applied_function_expressions(): |
|
|
expected_failures = {0, 3, 4} |
|
|
|
|
|
for i, (latex_str, sympy_expr) in enumerate(APPLIED_FUNCTION_EXPRESSION_PAIRS): |
|
|
if i in expected_failures: |
|
|
continue |
|
|
with evaluate(False): |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
|
|
|
def test_common_function_expressions(): |
|
|
for latex_str, sympy_expr in UNEVALUATED_COMMON_FUNCTION_EXPRESSION_PAIRS: |
|
|
with evaluate(False): |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
for latex_str, sympy_expr in EVALUATED_COMMON_FUNCTION_EXPRESSION_PAIRS: |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
|
|
|
|
|
|
@XFAIL |
|
|
def test_spacing(): |
|
|
for latex_str, sympy_expr in SPACING_RELATED_EXPRESSION_PAIRS: |
|
|
with evaluate(False): |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
|
|
|
def test_binomial_expressions(): |
|
|
for latex_str, sympy_expr in UNEVALUATED_BINOMIAL_EXPRESSION_PAIRS: |
|
|
with evaluate(False): |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
for latex_str, sympy_expr in EVALUATED_BINOMIAL_EXPRESSION_PAIRS: |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
|
|
|
def test_miscellaneous_expressions(): |
|
|
for latex_str, sympy_expr in MISCELLANEOUS_EXPRESSION_PAIRS: |
|
|
with evaluate(False): |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
|
|
|
def test_literal_complex_number_expressions(): |
|
|
for latex_str, sympy_expr in UNEVALUATED_LITERAL_COMPLEX_NUMBER_EXPRESSION_PAIRS: |
|
|
with evaluate(False): |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
|
|
|
def test_matrix_expressions(): |
|
|
for latex_str, sympy_expr in UNEVALUATED_MATRIX_EXPRESSION_PAIRS: |
|
|
with evaluate(False): |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
for latex_str, sympy_expr in EVALUATED_MATRIX_EXPRESSION_PAIRS: |
|
|
assert parse_latex_lark(latex_str) == sympy_expr, latex_str |
|
|
|