|
|
from sympy import sin, cos, tan, pi, symbols, Matrix, S, Function |
|
|
from sympy.physics.mechanics import (Particle, Point, ReferenceFrame, |
|
|
RigidBody) |
|
|
from sympy.physics.mechanics import (angular_momentum, dynamicsymbols, |
|
|
kinetic_energy, linear_momentum, |
|
|
outer, potential_energy, msubs, |
|
|
find_dynamicsymbols, Lagrangian) |
|
|
|
|
|
from sympy.physics.mechanics.functions import ( |
|
|
center_of_mass, _validate_coordinates, _parse_linear_solver) |
|
|
from sympy.testing.pytest import raises, warns_deprecated_sympy |
|
|
|
|
|
|
|
|
q1, q2, q3, q4, q5 = symbols('q1 q2 q3 q4 q5') |
|
|
N = ReferenceFrame('N') |
|
|
A = N.orientnew('A', 'Axis', [q1, N.z]) |
|
|
B = A.orientnew('B', 'Axis', [q2, A.x]) |
|
|
C = B.orientnew('C', 'Axis', [q3, B.y]) |
|
|
|
|
|
|
|
|
def test_linear_momentum(): |
|
|
N = ReferenceFrame('N') |
|
|
Ac = Point('Ac') |
|
|
Ac.set_vel(N, 25 * N.y) |
|
|
I = outer(N.x, N.x) |
|
|
A = RigidBody('A', Ac, N, 20, (I, Ac)) |
|
|
P = Point('P') |
|
|
Pa = Particle('Pa', P, 1) |
|
|
Pa.point.set_vel(N, 10 * N.x) |
|
|
raises(TypeError, lambda: linear_momentum(A, A, Pa)) |
|
|
raises(TypeError, lambda: linear_momentum(N, N, Pa)) |
|
|
assert linear_momentum(N, A, Pa) == 10 * N.x + 500 * N.y |
|
|
|
|
|
|
|
|
def test_angular_momentum_and_linear_momentum(): |
|
|
"""A rod with length 2l, centroidal inertia I, and mass M along with a |
|
|
particle of mass m fixed to the end of the rod rotate with an angular rate |
|
|
of omega about point O which is fixed to the non-particle end of the rod. |
|
|
The rod's reference frame is A and the inertial frame is N.""" |
|
|
m, M, l, I = symbols('m, M, l, I') |
|
|
omega = dynamicsymbols('omega') |
|
|
N = ReferenceFrame('N') |
|
|
a = ReferenceFrame('a') |
|
|
O = Point('O') |
|
|
Ac = O.locatenew('Ac', l * N.x) |
|
|
P = Ac.locatenew('P', l * N.x) |
|
|
O.set_vel(N, 0 * N.x) |
|
|
a.set_ang_vel(N, omega * N.z) |
|
|
Ac.v2pt_theory(O, N, a) |
|
|
P.v2pt_theory(O, N, a) |
|
|
Pa = Particle('Pa', P, m) |
|
|
A = RigidBody('A', Ac, a, M, (I * outer(N.z, N.z), Ac)) |
|
|
expected = 2 * m * omega * l * N.y + M * l * omega * N.y |
|
|
assert linear_momentum(N, A, Pa) == expected |
|
|
raises(TypeError, lambda: angular_momentum(N, N, A, Pa)) |
|
|
raises(TypeError, lambda: angular_momentum(O, O, A, Pa)) |
|
|
raises(TypeError, lambda: angular_momentum(O, N, O, Pa)) |
|
|
expected = (I + M * l**2 + 4 * m * l**2) * omega * N.z |
|
|
assert angular_momentum(O, N, A, Pa) == expected |
|
|
|
|
|
|
|
|
def test_kinetic_energy(): |
|
|
m, M, l1 = symbols('m M l1') |
|
|
omega = dynamicsymbols('omega') |
|
|
N = ReferenceFrame('N') |
|
|
O = Point('O') |
|
|
O.set_vel(N, 0 * N.x) |
|
|
Ac = O.locatenew('Ac', l1 * N.x) |
|
|
P = Ac.locatenew('P', l1 * N.x) |
|
|
a = ReferenceFrame('a') |
|
|
a.set_ang_vel(N, omega * N.z) |
|
|
Ac.v2pt_theory(O, N, a) |
|
|
P.v2pt_theory(O, N, a) |
|
|
Pa = Particle('Pa', P, m) |
|
|
I = outer(N.z, N.z) |
|
|
A = RigidBody('A', Ac, a, M, (I, Ac)) |
|
|
raises(TypeError, lambda: kinetic_energy(Pa, Pa, A)) |
|
|
raises(TypeError, lambda: kinetic_energy(N, N, A)) |
|
|
assert 0 == (kinetic_energy(N, Pa, A) - (M*l1**2*omega**2/2 |
|
|
+ 2*l1**2*m*omega**2 + omega**2/2)).expand() |
|
|
|
|
|
|
|
|
def test_potential_energy(): |
|
|
m, M, l1, g, h, H = symbols('m M l1 g h H') |
|
|
omega = dynamicsymbols('omega') |
|
|
N = ReferenceFrame('N') |
|
|
O = Point('O') |
|
|
O.set_vel(N, 0 * N.x) |
|
|
Ac = O.locatenew('Ac', l1 * N.x) |
|
|
P = Ac.locatenew('P', l1 * N.x) |
|
|
a = ReferenceFrame('a') |
|
|
a.set_ang_vel(N, omega * N.z) |
|
|
Ac.v2pt_theory(O, N, a) |
|
|
P.v2pt_theory(O, N, a) |
|
|
Pa = Particle('Pa', P, m) |
|
|
I = outer(N.z, N.z) |
|
|
A = RigidBody('A', Ac, a, M, (I, Ac)) |
|
|
Pa.potential_energy = m * g * h |
|
|
A.potential_energy = M * g * H |
|
|
assert potential_energy(A, Pa) == m * g * h + M * g * H |
|
|
|
|
|
|
|
|
def test_Lagrangian(): |
|
|
M, m, g, h = symbols('M m g h') |
|
|
N = ReferenceFrame('N') |
|
|
O = Point('O') |
|
|
O.set_vel(N, 0 * N.x) |
|
|
P = O.locatenew('P', 1 * N.x) |
|
|
P.set_vel(N, 10 * N.x) |
|
|
Pa = Particle('Pa', P, 1) |
|
|
Ac = O.locatenew('Ac', 2 * N.y) |
|
|
Ac.set_vel(N, 5 * N.y) |
|
|
a = ReferenceFrame('a') |
|
|
a.set_ang_vel(N, 10 * N.z) |
|
|
I = outer(N.z, N.z) |
|
|
A = RigidBody('A', Ac, a, 20, (I, Ac)) |
|
|
Pa.potential_energy = m * g * h |
|
|
A.potential_energy = M * g * h |
|
|
raises(TypeError, lambda: Lagrangian(A, A, Pa)) |
|
|
raises(TypeError, lambda: Lagrangian(N, N, Pa)) |
|
|
|
|
|
|
|
|
def test_msubs(): |
|
|
a, b = symbols('a, b') |
|
|
x, y, z = dynamicsymbols('x, y, z') |
|
|
|
|
|
expr = Matrix([[a*x + b, x*y.diff() + y], |
|
|
[x.diff().diff(), z + sin(z.diff())]]) |
|
|
sol = Matrix([[a + b, y], |
|
|
[x.diff().diff(), 1]]) |
|
|
sd = {x: 1, z: 1, z.diff(): 0, y.diff(): 0} |
|
|
assert msubs(expr, sd) == sol |
|
|
|
|
|
expr = cos(x + y)*tan(x + y) + b*x.diff() |
|
|
sd = {x: 0, y: pi/2, x.diff(): 1} |
|
|
assert msubs(expr, sd, smart=True) == b + 1 |
|
|
N = ReferenceFrame('N') |
|
|
v = x*N.x + y*N.y |
|
|
d = x*(N.x|N.x) + y*(N.y|N.y) |
|
|
v_sol = 1*N.y |
|
|
d_sol = 1*(N.y|N.y) |
|
|
sd = {x: 0, y: 1} |
|
|
assert msubs(v, sd) == v_sol |
|
|
assert msubs(d, sd) == d_sol |
|
|
|
|
|
|
|
|
def test_find_dynamicsymbols(): |
|
|
a, b = symbols('a, b') |
|
|
x, y, z = dynamicsymbols('x, y, z') |
|
|
expr = Matrix([[a*x + b, x*y.diff() + y], |
|
|
[x.diff().diff(), z + sin(z.diff())]]) |
|
|
|
|
|
sol = {x, y.diff(), y, x.diff().diff(), z, z.diff()} |
|
|
assert find_dynamicsymbols(expr) == sol |
|
|
|
|
|
exclude_list = [x, y, z] |
|
|
sol = {y.diff(), x.diff().diff(), z.diff()} |
|
|
assert find_dynamicsymbols(expr, exclude=exclude_list) == sol |
|
|
|
|
|
d, e, f = dynamicsymbols('d, e, f') |
|
|
A = ReferenceFrame('A') |
|
|
v = d * A.x + e * A.y + f * A.z |
|
|
sol = {d, e, f} |
|
|
assert find_dynamicsymbols(v, reference_frame=A) == sol |
|
|
|
|
|
raises(ValueError, lambda: find_dynamicsymbols(v)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_center_of_mass(): |
|
|
a = ReferenceFrame('a') |
|
|
m = symbols('m', real=True) |
|
|
p1 = Particle('p1', Point('p1_pt'), S.One) |
|
|
p2 = Particle('p2', Point('p2_pt'), S(2)) |
|
|
p3 = Particle('p3', Point('p3_pt'), S(3)) |
|
|
p4 = Particle('p4', Point('p4_pt'), m) |
|
|
b_f = ReferenceFrame('b_f') |
|
|
b_cm = Point('b_cm') |
|
|
mb = symbols('mb') |
|
|
b = RigidBody('b', b_cm, b_f, mb, (outer(b_f.x, b_f.x), b_cm)) |
|
|
p2.point.set_pos(p1.point, a.x) |
|
|
p3.point.set_pos(p1.point, a.x + a.y) |
|
|
p4.point.set_pos(p1.point, a.y) |
|
|
b.masscenter.set_pos(p1.point, a.y + a.z) |
|
|
point_o=Point('o') |
|
|
point_o.set_pos(p1.point, center_of_mass(p1.point, p1, p2, p3, p4, b)) |
|
|
expr = 5/(m + mb + 6)*a.x + (m + mb + 3)/(m + mb + 6)*a.y + mb/(m + mb + 6)*a.z |
|
|
assert point_o.pos_from(p1.point)-expr == 0 |
|
|
|
|
|
|
|
|
def test_validate_coordinates(): |
|
|
q1, q2, q3, u1, u2, u3, ua1, ua2, ua3 = dynamicsymbols('q1:4 u1:4 ua1:4') |
|
|
s1, s2, s3 = symbols('s1:4') |
|
|
|
|
|
_validate_coordinates([q1, q2, q3], [u1, u2, u3], |
|
|
u_auxiliary=[ua1, ua2, ua3]) |
|
|
|
|
|
_validate_coordinates([q1, q2]) |
|
|
_validate_coordinates([q1, q2], [u1]) |
|
|
_validate_coordinates(speeds=[u1, u2]) |
|
|
|
|
|
_validate_coordinates([q1, q2, q2], [u1, u2, u3], check_duplicates=False) |
|
|
raises(ValueError, lambda: _validate_coordinates( |
|
|
[q1, q2, q2], [u1, u2, u3])) |
|
|
_validate_coordinates([q1, q2, q3], [u1, u2, u2], check_duplicates=False) |
|
|
raises(ValueError, lambda: _validate_coordinates( |
|
|
[q1, q2, q3], [u1, u2, u2], check_duplicates=True)) |
|
|
raises(ValueError, lambda: _validate_coordinates( |
|
|
[q1, q2, q3], [q1, u2, u3], check_duplicates=True)) |
|
|
_validate_coordinates([q1, q2, q3], [u1, u2, u3], check_duplicates=False, |
|
|
u_auxiliary=[u1, ua2, ua2]) |
|
|
raises(ValueError, lambda: _validate_coordinates( |
|
|
[q1, q2, q3], [u1, u2, u3], u_auxiliary=[u1, ua2, ua3])) |
|
|
raises(ValueError, lambda: _validate_coordinates( |
|
|
[q1, q2, q3], [u1, u2, u3], u_auxiliary=[q1, ua2, ua3])) |
|
|
raises(ValueError, lambda: _validate_coordinates( |
|
|
[q1, q2, q3], [u1, u2, u3], u_auxiliary=[ua1, ua2, ua2])) |
|
|
|
|
|
_validate_coordinates([q1 + q2, q3], is_dynamicsymbols=False) |
|
|
raises(ValueError, lambda: _validate_coordinates([q1 + q2, q3])) |
|
|
_validate_coordinates([s1, q1, q2], [0, u1, u2], is_dynamicsymbols=False) |
|
|
raises(ValueError, lambda: _validate_coordinates( |
|
|
[s1, q1, q2], [0, u1, u2], is_dynamicsymbols=True)) |
|
|
_validate_coordinates([s1 + s2 + s3, q1], [0, u1], is_dynamicsymbols=False) |
|
|
raises(ValueError, lambda: _validate_coordinates( |
|
|
[s1 + s2 + s3, q1], [0, u1], is_dynamicsymbols=True)) |
|
|
_validate_coordinates(u_auxiliary=[s1, ua1], is_dynamicsymbols=False) |
|
|
raises(ValueError, lambda: _validate_coordinates(u_auxiliary=[s1, ua1])) |
|
|
|
|
|
t = dynamicsymbols._t |
|
|
a = symbols('a') |
|
|
f1, f2 = symbols('f1:3', cls=Function) |
|
|
_validate_coordinates([f1(a), f2(a)], is_dynamicsymbols=False) |
|
|
raises(ValueError, lambda: _validate_coordinates([f1(a), f2(a)])) |
|
|
raises(ValueError, lambda: _validate_coordinates(speeds=[f1(a), f2(a)])) |
|
|
dynamicsymbols._t = a |
|
|
_validate_coordinates([f1(a), f2(a)]) |
|
|
raises(ValueError, lambda: _validate_coordinates([f1(t), f2(t)])) |
|
|
dynamicsymbols._t = t |
|
|
|
|
|
|
|
|
def test_parse_linear_solver(): |
|
|
A, b = Matrix(3, 3, symbols('a:9')), Matrix(3, 2, symbols('b:6')) |
|
|
assert _parse_linear_solver(Matrix.LUsolve) == Matrix.LUsolve |
|
|
assert _parse_linear_solver('LU')(A, b) == Matrix.LUsolve(A, b) |
|
|
|
|
|
|
|
|
def test_deprecated_moved_functions(): |
|
|
from sympy.physics.mechanics.functions import ( |
|
|
inertia, inertia_of_point_mass, gravity) |
|
|
N = ReferenceFrame('N') |
|
|
with warns_deprecated_sympy(): |
|
|
assert inertia(N, 0, 1, 0, 1) == (N.x | N.y) + (N.y | N.x) + (N.y | N.y) |
|
|
with warns_deprecated_sympy(): |
|
|
assert inertia_of_point_mass(1, N.x + N.y, N) == ( |
|
|
(N.x | N.x) + (N.y | N.y) + 2 * (N.z | N.z) - |
|
|
(N.x | N.y) - (N.y | N.x)) |
|
|
p = Particle('P') |
|
|
with warns_deprecated_sympy(): |
|
|
assert gravity(-2 * N.z, p) == [(p.masscenter, -2 * p.mass * N.z)] |
|
|
|