|
|
from sympy import solve |
|
|
from sympy import (cos, expand, Matrix, sin, symbols, tan, sqrt, S, |
|
|
zeros, eye) |
|
|
from sympy.simplify.simplify import simplify |
|
|
from sympy.physics.mechanics import (dynamicsymbols, ReferenceFrame, Point, |
|
|
RigidBody, KanesMethod, inertia, Particle, |
|
|
dot, find_dynamicsymbols) |
|
|
from sympy.testing.pytest import raises |
|
|
|
|
|
|
|
|
def test_invalid_coordinates(): |
|
|
|
|
|
l, m, g = symbols('l m g') |
|
|
q, u = symbols('q u') |
|
|
kd = [q.diff(dynamicsymbols._t) - u] |
|
|
N, O = ReferenceFrame('N'), Point('O') |
|
|
O.set_vel(N, 0) |
|
|
P = Particle('P', Point('P'), m) |
|
|
P.point.set_pos(O, l * (sin(q) * N.x - cos(q) * N.y)) |
|
|
F = (P.point, -m * g * N.y) |
|
|
raises(ValueError, lambda: KanesMethod(N, [q], [u], kd, bodies=[P], |
|
|
forcelist=[F])) |
|
|
|
|
|
|
|
|
def test_one_dof(): |
|
|
|
|
|
|
|
|
q, u = dynamicsymbols('q u') |
|
|
qd, ud = dynamicsymbols('q u', 1) |
|
|
m, c, k = symbols('m c k') |
|
|
N = ReferenceFrame('N') |
|
|
P = Point('P') |
|
|
P.set_vel(N, u * N.x) |
|
|
|
|
|
kd = [qd - u] |
|
|
FL = [(P, (-k * q - c * u) * N.x)] |
|
|
pa = Particle('pa', P, m) |
|
|
BL = [pa] |
|
|
|
|
|
KM = KanesMethod(N, [q], [u], kd) |
|
|
KM.kanes_equations(BL, FL) |
|
|
|
|
|
assert KM.bodies == BL |
|
|
assert KM.loads == FL |
|
|
|
|
|
MM = KM.mass_matrix |
|
|
forcing = KM.forcing |
|
|
rhs = MM.inv() * forcing |
|
|
assert expand(rhs[0]) == expand(-(q * k + u * c) / m) |
|
|
|
|
|
assert simplify(KM.rhs() - |
|
|
KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(2, 1) |
|
|
|
|
|
assert (KM.linearize(A_and_B=True, )[0] == Matrix([[0, 1], [-k/m, -c/m]])) |
|
|
|
|
|
|
|
|
def test_two_dof(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2') |
|
|
q1d, q2d, u1d, u2d = dynamicsymbols('q1 q2 u1 u2', 1) |
|
|
m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2') |
|
|
N = ReferenceFrame('N') |
|
|
P1 = Point('P1') |
|
|
P2 = Point('P2') |
|
|
P1.set_vel(N, u1 * N.x) |
|
|
P2.set_vel(N, (u1 + u2) * N.x) |
|
|
|
|
|
|
|
|
kd = [q1d/2 - u1/2, 2*q2d - 2*u2] |
|
|
|
|
|
|
|
|
|
|
|
FL = [(P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x), (P2, (-k2 * |
|
|
q2 - c2 * u2) * N.x)] |
|
|
pa1 = Particle('pa1', P1, m) |
|
|
pa2 = Particle('pa2', P2, m) |
|
|
BL = [pa1, pa2] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd) |
|
|
KM.kanes_equations(BL, FL) |
|
|
MM = KM.mass_matrix |
|
|
forcing = KM.forcing |
|
|
rhs = MM.inv() * forcing |
|
|
assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m) |
|
|
assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 * |
|
|
c2 * u2) / m) |
|
|
|
|
|
|
|
|
assert KM.explicit_kinematics |
|
|
assert KM.mass_matrix_kin == eye(2) |
|
|
|
|
|
|
|
|
KM.explicit_kinematics = False |
|
|
assert KM.mass_matrix_kin == Matrix([[S(1)/2, 0], [0, 2]]) |
|
|
|
|
|
|
|
|
|
|
|
for explicit_kinematics in [False, True]: |
|
|
KM.explicit_kinematics = explicit_kinematics |
|
|
assert simplify(KM.rhs() - |
|
|
KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(4, 1) |
|
|
|
|
|
|
|
|
|
|
|
kd = [q1d - u1**2, sin(q2d) - cos(u2)] |
|
|
raises(ValueError, lambda: KanesMethod(N, q_ind=[q1, q2], |
|
|
u_ind=[u1, u2], kd_eqs=kd)) |
|
|
|
|
|
def test_pend(): |
|
|
q, u = dynamicsymbols('q u') |
|
|
qd, ud = dynamicsymbols('q u', 1) |
|
|
m, l, g = symbols('m l g') |
|
|
N = ReferenceFrame('N') |
|
|
P = Point('P') |
|
|
P.set_vel(N, -l * u * sin(q) * N.x + l * u * cos(q) * N.y) |
|
|
kd = [qd - u] |
|
|
|
|
|
FL = [(P, m * g * N.x)] |
|
|
pa = Particle('pa', P, m) |
|
|
BL = [pa] |
|
|
|
|
|
KM = KanesMethod(N, [q], [u], kd) |
|
|
KM.kanes_equations(BL, FL) |
|
|
MM = KM.mass_matrix |
|
|
forcing = KM.forcing |
|
|
rhs = MM.inv() * forcing |
|
|
rhs.simplify() |
|
|
assert expand(rhs[0]) == expand(-g / l * sin(q)) |
|
|
assert simplify(KM.rhs() - |
|
|
KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(2, 1) |
|
|
|
|
|
|
|
|
def test_rolling_disc(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3') |
|
|
q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1) |
|
|
r, m, g = symbols('r m g') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
N = ReferenceFrame('N') |
|
|
Y = N.orientnew('Y', 'Axis', [q1, N.z]) |
|
|
L = Y.orientnew('L', 'Axis', [q2, Y.x]) |
|
|
R = L.orientnew('R', 'Axis', [q3, L.y]) |
|
|
w_R_N_qd = R.ang_vel_in(N) |
|
|
R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
C = Point('C') |
|
|
C.set_vel(N, 0) |
|
|
Dmc = C.locatenew('Dmc', r * L.z) |
|
|
Dmc.v2pt_theory(C, N, R) |
|
|
|
|
|
|
|
|
I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2) |
|
|
|
|
|
|
|
|
|
|
|
kd = [dot(R.ang_vel_in(N) - w_R_N_qd, uv) for uv in L] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ForceList = [(Dmc, - m * g * Y.z)] |
|
|
BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc)) |
|
|
BodyList = [BodyD] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd) |
|
|
KM.kanes_equations(BodyList, ForceList) |
|
|
MM = KM.mass_matrix |
|
|
forcing = KM.forcing |
|
|
rhs = MM.inv() * forcing |
|
|
kdd = KM.kindiffdict() |
|
|
rhs = rhs.subs(kdd) |
|
|
rhs.simplify() |
|
|
assert rhs.expand() == Matrix([(6*u2*u3*r - u3**2*r*tan(q2) + |
|
|
4*g*sin(q2))/(5*r), -2*u1*u3/3, u1*(-2*u2 + u3*tan(q2))]).expand() |
|
|
assert simplify(KM.rhs() - |
|
|
KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(6, 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A = KM.linearize(A_and_B=True)[0] |
|
|
A_upright = A.subs({r: 1, g: 1, m: 1}).subs({q1: 0, q2: 0, q3: 0, u1: 0, u3: 0}) |
|
|
import sympy |
|
|
assert sympy.sympify(A_upright.subs({u2: 1 / sqrt(3)})).eigenvals() == {S.Zero: 6} |
|
|
|
|
|
|
|
|
def test_aux(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3') |
|
|
q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1) |
|
|
u4, u5, f1, f2 = dynamicsymbols('u4, u5, f1, f2') |
|
|
u4d, u5d = dynamicsymbols('u4, u5', 1) |
|
|
r, m, g = symbols('r m g') |
|
|
|
|
|
N = ReferenceFrame('N') |
|
|
Y = N.orientnew('Y', 'Axis', [q1, N.z]) |
|
|
L = Y.orientnew('L', 'Axis', [q2, Y.x]) |
|
|
R = L.orientnew('R', 'Axis', [q3, L.y]) |
|
|
w_R_N_qd = R.ang_vel_in(N) |
|
|
R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z) |
|
|
|
|
|
C = Point('C') |
|
|
C.set_vel(N, u4 * L.x + u5 * (Y.z ^ L.x)) |
|
|
Dmc = C.locatenew('Dmc', r * L.z) |
|
|
Dmc.v2pt_theory(C, N, R) |
|
|
Dmc.a2pt_theory(C, N, R) |
|
|
|
|
|
I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2) |
|
|
|
|
|
kd = [dot(R.ang_vel_in(N) - w_R_N_qd, uv) for uv in L] |
|
|
|
|
|
ForceList = [(Dmc, - m * g * Y.z), (C, f1 * L.x + f2 * (Y.z ^ L.x))] |
|
|
BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc)) |
|
|
BodyList = [BodyD] |
|
|
|
|
|
KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3, u4, u5], |
|
|
kd_eqs=kd) |
|
|
(fr, frstar) = KM.kanes_equations(BodyList, ForceList) |
|
|
fr = fr.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0}) |
|
|
frstar = frstar.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0}) |
|
|
|
|
|
KM2 = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd, |
|
|
u_auxiliary=[u4, u5]) |
|
|
(fr2, frstar2) = KM2.kanes_equations(BodyList, ForceList) |
|
|
fr2 = fr2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0}) |
|
|
frstar2 = frstar2.subs({u4d: 0, u5d: 0}).subs({u4: 0, u5: 0}) |
|
|
|
|
|
frstar.simplify() |
|
|
frstar2.simplify() |
|
|
|
|
|
assert (fr - fr2).expand() == Matrix([0, 0, 0, 0, 0]) |
|
|
assert (frstar - frstar2).expand() == Matrix([0, 0, 0, 0, 0]) |
|
|
|
|
|
|
|
|
def test_parallel_axis(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gravity = symbols('g') |
|
|
k, ls = symbols('k ls') |
|
|
a, mA, mC = symbols('a mA mC') |
|
|
F = dynamicsymbols('F') |
|
|
Ix, Iy, Iz = symbols('Ix Iy Iz') |
|
|
|
|
|
|
|
|
q1, q2 = dynamicsymbols('q1 q2') |
|
|
q1d, q2d = dynamicsymbols('q1 q2', 1) |
|
|
u1, u2 = dynamicsymbols('u1 u2') |
|
|
u1d, u2d = dynamicsymbols('u1 u2', 1) |
|
|
|
|
|
|
|
|
N = ReferenceFrame('N') |
|
|
A = ReferenceFrame('A') |
|
|
|
|
|
A.orient(N, 'Axis', [-q2, N.z]) |
|
|
A.set_ang_vel(N, -u2 * N.z) |
|
|
|
|
|
|
|
|
O = Point('O') |
|
|
|
|
|
|
|
|
|
|
|
C = O.locatenew('C', q1 * N.x) |
|
|
Ao = C.locatenew('Ao', a * A.y) |
|
|
|
|
|
|
|
|
O.set_vel(N, 0) |
|
|
C.set_vel(N, u1 * N.x) |
|
|
Ao.v2pt_theory(C, N, A) |
|
|
Cart = Particle('Cart', C, mC) |
|
|
Pendulum = RigidBody('Pendulum', Ao, A, mA, (inertia(A, Ix, Iy, Iz), C)) |
|
|
|
|
|
|
|
|
|
|
|
kindiffs = [q1d - u1, q2d - u2] |
|
|
|
|
|
bodyList = [Cart, Pendulum] |
|
|
|
|
|
forceList = [(Ao, -N.y * gravity * mA), |
|
|
(C, -N.y * gravity * mC), |
|
|
(C, -N.x * k * (q1 - ls)), |
|
|
(C, N.x * F)] |
|
|
|
|
|
km = KanesMethod(N, [q1, q2], [u1, u2], kindiffs) |
|
|
(fr, frstar) = km.kanes_equations(bodyList, forceList) |
|
|
mm = km.mass_matrix_full |
|
|
assert mm[3, 3] == Iz |
|
|
|
|
|
def test_input_format(): |
|
|
|
|
|
q, u = dynamicsymbols('q u') |
|
|
qd, ud = dynamicsymbols('q u', 1) |
|
|
m, c, k = symbols('m c k') |
|
|
N = ReferenceFrame('N') |
|
|
P = Point('P') |
|
|
P.set_vel(N, u * N.x) |
|
|
|
|
|
kd = [qd - u] |
|
|
FL = [(P, (-k * q - c * u) * N.x)] |
|
|
pa = Particle('pa', P, m) |
|
|
BL = [pa] |
|
|
|
|
|
KM = KanesMethod(N, [q], [u], kd) |
|
|
|
|
|
assert KM.kanes_equations(BL)[0] == Matrix([0]) |
|
|
|
|
|
assert KM.kanes_equations(bodies=BL, loads=None)[0] == Matrix([0]) |
|
|
|
|
|
assert KM.kanes_equations(BL, loads=None)[0] == Matrix([0]) |
|
|
|
|
|
assert KM.kanes_equations(BL)[0] == Matrix([0]) |
|
|
|
|
|
assert KM.kanes_equations(BL, [])[0] == Matrix([0]) |
|
|
|
|
|
raises(ValueError, lambda: KM._form_fr('bad input')) |
|
|
|
|
|
|
|
|
KM = KanesMethod(N, [q], [u], kd, bodies=BL, forcelist=FL) |
|
|
assert KM.kanes_equations()[0] == Matrix([-c*u - k*q]) |
|
|
|
|
|
|
|
|
q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2') |
|
|
q1d, q2d, u1d, u2d = dynamicsymbols('q1 q2 u1 u2', 1) |
|
|
m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2') |
|
|
N = ReferenceFrame('N') |
|
|
P1 = Point('P1') |
|
|
P2 = Point('P2') |
|
|
P1.set_vel(N, u1 * N.x) |
|
|
P2.set_vel(N, (u1 + u2) * N.x) |
|
|
kd = [q1d - u1, q2d - u2] |
|
|
|
|
|
FL = ((P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x), (P2, (-k2 * |
|
|
q2 - c2 * u2) * N.x)) |
|
|
pa1 = Particle('pa1', P1, m) |
|
|
pa2 = Particle('pa2', P2, m) |
|
|
BL = (pa1, pa2) |
|
|
|
|
|
KM = KanesMethod(N, q_ind=[q1, q2], u_ind=[u1, u2], kd_eqs=kd) |
|
|
|
|
|
|
|
|
KM.kanes_equations(BL, FL) |
|
|
MM = KM.mass_matrix |
|
|
forcing = KM.forcing |
|
|
rhs = MM.inv() * forcing |
|
|
assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m) |
|
|
assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 * |
|
|
c2 * u2) / m) |
|
|
|
|
|
|
|
|
def test_implicit_kinematics(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
NED = ReferenceFrame('NED') |
|
|
NED_o = Point('NED_o') |
|
|
NED_o.set_vel(NED, 0) |
|
|
|
|
|
|
|
|
q_att = dynamicsymbols('lambda_0:4', real=True) |
|
|
B = NED.orientnew('B', 'Quaternion', q_att) |
|
|
|
|
|
|
|
|
q_pos = dynamicsymbols('B_x:z') |
|
|
B_cm = NED_o.locatenew('B_cm', q_pos[0]*B.x + q_pos[1]*B.y + q_pos[2]*B.z) |
|
|
|
|
|
q_ind = q_att[1:] + q_pos |
|
|
q_dep = [q_att[0]] |
|
|
|
|
|
kinematic_eqs = [] |
|
|
|
|
|
|
|
|
B_ang_vel = B.ang_vel_in(NED) |
|
|
P, Q, R = dynamicsymbols('P Q R') |
|
|
B.set_ang_vel(NED, P*B.x + Q*B.y + R*B.z) |
|
|
|
|
|
B_ang_vel_kd = (B.ang_vel_in(NED) - B_ang_vel).simplify() |
|
|
|
|
|
|
|
|
kinematic_eqs += [ |
|
|
B_ang_vel_kd & B.x, |
|
|
B_ang_vel_kd & B.y, |
|
|
B_ang_vel_kd & B.z |
|
|
] |
|
|
|
|
|
B_cm_vel = B_cm.vel(NED) |
|
|
U, V, W = dynamicsymbols('U V W') |
|
|
B_cm.set_vel(NED, U*B.x + V*B.y + W*B.z) |
|
|
|
|
|
|
|
|
B_ref_vel_kd = (B_cm.vel(NED) - B_cm_vel) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
kinematic_eqs += [ |
|
|
B_ref_vel_kd & B.x, |
|
|
B_ref_vel_kd & B.y, |
|
|
B_ref_vel_kd & B.z, |
|
|
] |
|
|
|
|
|
u_ind = [U, V, W, P, Q, R] |
|
|
|
|
|
|
|
|
q_att_vec = Matrix(q_att) |
|
|
config_cons = [(q_att_vec.T*q_att_vec)[0] - 1] |
|
|
kinematic_eqs = kinematic_eqs + [(q_att_vec.T * q_att_vec.diff())[0]] |
|
|
|
|
|
try: |
|
|
KM = KanesMethod(NED, q_ind, u_ind, |
|
|
q_dependent= q_dep, |
|
|
kd_eqs = kinematic_eqs, |
|
|
configuration_constraints = config_cons, |
|
|
velocity_constraints= [], |
|
|
u_dependent= [], |
|
|
u_auxiliary = [], |
|
|
explicit_kinematics = False |
|
|
) |
|
|
except Exception as e: |
|
|
raise e |
|
|
|
|
|
|
|
|
M_B = symbols('M_B') |
|
|
J_B = inertia(B, *[S(f'J_B_{ax}')*(1 if ax[0] == ax[1] else -1) |
|
|
for ax in ['xx', 'yy', 'zz', 'xy', 'yz', 'xz']]) |
|
|
J_B = J_B.subs({S('J_B_xy'): 0, S('J_B_yz'): 0}) |
|
|
RB = RigidBody('RB', B_cm, B, M_B, (J_B, B_cm)) |
|
|
|
|
|
rigid_bodies = [RB] |
|
|
|
|
|
force_list = [ |
|
|
|
|
|
(RB.masscenter, RB.mass*S('g')*NED.z), |
|
|
|
|
|
(RB.frame, dynamicsymbols('T_z')*B.z), |
|
|
(RB.masscenter, dynamicsymbols('F_z')*B.z) |
|
|
] |
|
|
|
|
|
KM.kanes_equations(rigid_bodies, force_list) |
|
|
|
|
|
|
|
|
n_ops_implicit = sum( |
|
|
[x.count_ops() for x in KM.forcing_full] + |
|
|
[x.count_ops() for x in KM.mass_matrix_full] |
|
|
) |
|
|
|
|
|
mass_matrix_kin_implicit = KM.mass_matrix_kin |
|
|
forcing_kin_implicit = KM.forcing_kin |
|
|
|
|
|
KM.explicit_kinematics = True |
|
|
n_ops_explicit = sum( |
|
|
[x.count_ops() for x in KM.forcing_full] + |
|
|
[x.count_ops() for x in KM.mass_matrix_full] |
|
|
) |
|
|
forcing_kin_explicit = KM.forcing_kin |
|
|
|
|
|
assert n_ops_implicit / n_ops_explicit < .05 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
assert (mass_matrix_kin_implicit * KM.q.diff() - forcing_kin_implicit) == Matrix(kinematic_eqs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
qdot_candidate = forcing_kin_explicit |
|
|
|
|
|
quat_dot_textbook = Matrix([ |
|
|
[0, -P, -Q, -R], |
|
|
[P, 0, R, -Q], |
|
|
[Q, -R, 0, P], |
|
|
[R, Q, -P, 0], |
|
|
]) * q_att_vec / 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
qdot_candidate[-1] = quat_dot_textbook[0] |
|
|
qdot_candidate[0] = quat_dot_textbook[1] |
|
|
qdot_candidate[1] = quat_dot_textbook[2] |
|
|
qdot_candidate[2] = quat_dot_textbook[3] |
|
|
|
|
|
|
|
|
lambda_0_sol = solve(config_cons[0], q_att_vec[0])[1] |
|
|
lhs_candidate = simplify(mass_matrix_kin_implicit * qdot_candidate).subs({q_att_vec[0]: lambda_0_sol}) |
|
|
assert lhs_candidate == forcing_kin_implicit |
|
|
|
|
|
def test_issue_24887(): |
|
|
|
|
|
g, l, m, c = symbols('g l m c') |
|
|
q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1:4 u1:4') |
|
|
N = ReferenceFrame('N') |
|
|
A = ReferenceFrame('A') |
|
|
A.orient_body_fixed(N, (q1, q2, q3), 'zxy') |
|
|
N_w_A = A.ang_vel_in(N) |
|
|
|
|
|
kdes = [N_w_A.dot(A.x) - u1, N_w_A.dot(A.y) - u2, N_w_A.dot(A.z) - u3] |
|
|
O = Point('O') |
|
|
O.set_vel(N, 0) |
|
|
Po = O.locatenew('Po', -l * A.y) |
|
|
Po.set_vel(A, 0) |
|
|
P = Particle('P', Po, m) |
|
|
kane = KanesMethod(N, [q1, q2, q3], [u1, u2, u3], kdes, bodies=[P], |
|
|
forcelist=[(Po, -m * g * N.y)]) |
|
|
kane.kanes_equations() |
|
|
expected_md = m * l ** 2 * Matrix([[1, 0, 0], [0, 0, 0], [0, 0, 1]]) |
|
|
expected_fd = Matrix([ |
|
|
[l*m*(g*(sin(q1)*sin(q3) - sin(q2)*cos(q1)*cos(q3)) - l*u2*u3)], |
|
|
[0], [l*m*(-g*(sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1)) + l*u1*u2)]]) |
|
|
assert find_dynamicsymbols(kane.forcing).issubset({q1, q2, q3, u1, u2, u3}) |
|
|
assert simplify(kane.mass_matrix - expected_md) == zeros(3, 3) |
|
|
assert simplify(kane.forcing - expected_fd) == zeros(3, 1) |
|
|
|