|
|
from sympy import (zeros, Matrix, symbols, lambdify, sqrt, pi, |
|
|
simplify) |
|
|
from sympy.physics.mechanics import (dynamicsymbols, cross, inertia, RigidBody, |
|
|
ReferenceFrame, KanesMethod) |
|
|
|
|
|
|
|
|
def _create_rolling_disc(): |
|
|
|
|
|
t = dynamicsymbols._t |
|
|
q1, q2, q3, q4, q5, u1, u2, u3, u4, u5 = dynamicsymbols('q1:6 u1:6') |
|
|
g, r, m = symbols('g r m') |
|
|
|
|
|
ground = RigidBody('ground') |
|
|
disc = RigidBody('disk', mass=m) |
|
|
disc.inertia = (m * r ** 2 / 4 * inertia(disc.frame, 1, 2, 1), |
|
|
disc.masscenter) |
|
|
ground.masscenter.set_vel(ground.frame, 0) |
|
|
disc.masscenter.set_vel(disc.frame, 0) |
|
|
int_frame = ReferenceFrame('int_frame') |
|
|
|
|
|
int_frame.orient_body_fixed(ground.frame, (q1, q2, 0), 'zxy') |
|
|
disc.frame.orient_axis(int_frame, int_frame.y, q3) |
|
|
g_w_d = disc.frame.ang_vel_in(ground.frame) |
|
|
disc.frame.set_ang_vel(ground.frame, |
|
|
u1 * disc.x + u2 * disc.y + u3 * disc.z) |
|
|
|
|
|
cp = ground.masscenter.locatenew('contact_point', |
|
|
q4 * ground.x + q5 * ground.y) |
|
|
cp.set_vel(ground.frame, u4 * ground.x + u5 * ground.y) |
|
|
disc.masscenter.set_pos(cp, r * int_frame.z) |
|
|
disc.masscenter.set_vel(ground.frame, cross( |
|
|
disc.frame.ang_vel_in(ground.frame), disc.masscenter.pos_from(cp))) |
|
|
|
|
|
kdes = [g_w_d.dot(disc.x) - u1, g_w_d.dot(disc.y) - u2, |
|
|
g_w_d.dot(disc.z) - u3, q4.diff(t) - u4, q5.diff(t) - u5] |
|
|
|
|
|
v0 = cp.vel(ground.frame) + cross( |
|
|
disc.frame.ang_vel_in(int_frame), cp.pos_from(disc.masscenter)) |
|
|
fnh = [v0.dot(ground.x), v0.dot(ground.y)] |
|
|
|
|
|
loads = [(disc.masscenter, -disc.mass * g * ground.z)] |
|
|
bodies = [disc] |
|
|
return { |
|
|
'frame': ground.frame, |
|
|
'q_ind': [q1, q2, q3, q4, q5], |
|
|
'u_ind': [u1, u2, u3], |
|
|
'u_dep': [u4, u5], |
|
|
'kdes': kdes, |
|
|
'fnh': fnh, |
|
|
'bodies': bodies, |
|
|
'loads': loads |
|
|
} |
|
|
|
|
|
|
|
|
def _verify_rolling_disc_numerically(kane, all_zero=False): |
|
|
q, u, p = dynamicsymbols('q1:6'), dynamicsymbols('u1:6'), symbols('g r m') |
|
|
eval_sys = lambdify((q, u, p), (kane.mass_matrix_full, kane.forcing_full), |
|
|
cse=True) |
|
|
solve_sys = lambda q, u, p: Matrix.LUsolve( |
|
|
*(Matrix(mat) for mat in eval_sys(q, u, p))) |
|
|
solve_u_dep = lambdify((q, u[:3], p), kane._Ars * Matrix(u[:3]), cse=True) |
|
|
eps = 1e-10 |
|
|
p_vals = (9.81, 0.26, 3.43) |
|
|
|
|
|
q_vals = (0.3, 0.1, 1.97, -0.35, 2.27) |
|
|
u_vals = [-0.2, 1.3, 0.15] |
|
|
u_vals.extend(solve_u_dep(q_vals, u_vals, p_vals)[:2, 0]) |
|
|
expected = Matrix([ |
|
|
0.126603940595934, 0.215942571601660, 1.28736069604936, |
|
|
0.319764288376543, 0.0989146857254898, -0.925848952664489, |
|
|
-0.0181350656532944, 2.91695398184589, -0.00992793421754526, |
|
|
0.0412861634829171]) |
|
|
assert all(abs(x) < eps for x in |
|
|
(solve_sys(q_vals, u_vals, p_vals) - expected)) |
|
|
|
|
|
q_vals = (3.97, -0.28, 8.2, -0.35, 2.27) |
|
|
u_vals = [-0.25, -2.2, 0.62] |
|
|
u_vals.extend(solve_u_dep(q_vals, u_vals, p_vals)[:2, 0]) |
|
|
expected = Matrix([ |
|
|
0.0259159090798597, 0.668041660387416, -2.19283799213811, |
|
|
0.385441810852219, 0.420109283790573, 1.45030568179066, |
|
|
-0.0110924422400793, -8.35617840186040, -0.154098542632173, |
|
|
-0.146102664410010]) |
|
|
assert all(abs(x) < eps for x in |
|
|
(solve_sys(q_vals, u_vals, p_vals) - expected)) |
|
|
if all_zero: |
|
|
q_vals = (0, 0, 0, 0, 0) |
|
|
u_vals = (0, 0, 0, 0, 0) |
|
|
assert solve_sys(q_vals, u_vals, p_vals) == zeros(10, 1) |
|
|
|
|
|
|
|
|
def test_kane_rolling_disc_lu(): |
|
|
props = _create_rolling_disc() |
|
|
kane = KanesMethod(props['frame'], props['q_ind'], props['u_ind'], |
|
|
props['kdes'], u_dependent=props['u_dep'], |
|
|
velocity_constraints=props['fnh'], |
|
|
bodies=props['bodies'], forcelist=props['loads'], |
|
|
explicit_kinematics=False, constraint_solver='LU') |
|
|
kane.kanes_equations() |
|
|
_verify_rolling_disc_numerically(kane) |
|
|
|
|
|
|
|
|
def test_kane_rolling_disc_kdes_callable(): |
|
|
props = _create_rolling_disc() |
|
|
kane = KanesMethod( |
|
|
props['frame'], props['q_ind'], props['u_ind'], props['kdes'], |
|
|
u_dependent=props['u_dep'], velocity_constraints=props['fnh'], |
|
|
bodies=props['bodies'], forcelist=props['loads'], |
|
|
explicit_kinematics=False, |
|
|
kd_eqs_solver=lambda A, b: simplify(A.LUsolve(b))) |
|
|
q, u, p = dynamicsymbols('q1:6'), dynamicsymbols('u1:6'), symbols('g r m') |
|
|
qd = dynamicsymbols('q1:6', 1) |
|
|
eval_kdes = lambdify((q, qd, u, p), tuple(kane.kindiffdict().items())) |
|
|
eps = 1e-10 |
|
|
|
|
|
p_vals = (9.81, 0.25, 3.5) |
|
|
zero_vals = (0, 0, 0, 0, 0) |
|
|
assert all(abs(qdi - fui) < eps for qdi, fui in |
|
|
eval_kdes(zero_vals, zero_vals, zero_vals, p_vals)) |
|
|
|
|
|
q_vals = tuple(map(float, (pi / 6, pi / 3, pi / 2, 0.42, 0.62))) |
|
|
qd_vals = tuple(map(float, (4, 1 / 3, 4 - 2 * sqrt(3), |
|
|
0.25 * (2 * sqrt(3) - 3), |
|
|
0.25 * (2 - sqrt(3))))) |
|
|
u_vals = tuple(map(float, (-2, 4, 1 / 3, 0.25 * (-3 + 2 * sqrt(3)), |
|
|
0.25 * (-sqrt(3) + 2)))) |
|
|
assert all(abs(qdi - fui) < eps for qdi, fui in |
|
|
eval_kdes(q_vals, qd_vals, u_vals, p_vals)) |
|
|
|