|
|
from pytest import raises |
|
|
|
|
|
import sympy |
|
|
from sympy.physics.quantum import Dagger, AntiCommutator, qapply |
|
|
from sympy.physics.quantum.fermion import FermionOp |
|
|
from sympy.physics.quantum.fermion import FermionFockKet, FermionFockBra |
|
|
from sympy import Symbol |
|
|
|
|
|
|
|
|
def test_fermionoperator(): |
|
|
c = FermionOp('c') |
|
|
d = FermionOp('d') |
|
|
|
|
|
assert isinstance(c, FermionOp) |
|
|
assert isinstance(Dagger(c), FermionOp) |
|
|
|
|
|
assert c.is_annihilation |
|
|
assert not Dagger(c).is_annihilation |
|
|
|
|
|
assert FermionOp("c") == FermionOp("c", True) |
|
|
assert FermionOp("c") != FermionOp("d") |
|
|
assert FermionOp("c", True) != FermionOp("c", False) |
|
|
|
|
|
assert AntiCommutator(c, Dagger(c)).doit() == 1 |
|
|
|
|
|
assert AntiCommutator(c, Dagger(d)).doit() == c * Dagger(d) + Dagger(d) * c |
|
|
|
|
|
|
|
|
def test_fermion_states(): |
|
|
c = FermionOp("c") |
|
|
|
|
|
|
|
|
assert (FermionFockBra(0) * FermionFockKet(1)).doit() == 0 |
|
|
assert (FermionFockBra(1) * FermionFockKet(1)).doit() == 1 |
|
|
|
|
|
assert qapply(c * FermionFockKet(1)) == FermionFockKet(0) |
|
|
assert qapply(c * FermionFockKet(0)) == 0 |
|
|
|
|
|
assert qapply(Dagger(c) * FermionFockKet(0)) == FermionFockKet(1) |
|
|
assert qapply(Dagger(c) * FermionFockKet(1)) == 0 |
|
|
|
|
|
|
|
|
def test_power(): |
|
|
c = FermionOp("c") |
|
|
assert c**0 == 1 |
|
|
assert c**1 == c |
|
|
assert c**2 == 0 |
|
|
assert c**3 == 0 |
|
|
assert Dagger(c)**1 == Dagger(c) |
|
|
assert Dagger(c)**2 == 0 |
|
|
|
|
|
assert (c**Symbol('a')).func == sympy.core.power.Pow |
|
|
assert (c**Symbol('a')).args == (c, Symbol('a')) |
|
|
|
|
|
with raises(ValueError): |
|
|
c**-1 |
|
|
|
|
|
with raises(ValueError): |
|
|
c**3.2 |
|
|
|
|
|
with raises(TypeError): |
|
|
c**1j |
|
|
|