Phi2-Fine-Tuning
/
phivenv
/Lib
/site-packages
/sympy
/plotting
/pygletplot
/tests
/test_plotting.py
| from sympy.external.importtools import import_module | |
| disabled = False | |
| # if pyglet.gl fails to import, e.g. opengl is missing, we disable the tests | |
| pyglet_gl = import_module("pyglet.gl", catch=(OSError,)) | |
| pyglet_window = import_module("pyglet.window", catch=(OSError,)) | |
| if not pyglet_gl or not pyglet_window: | |
| disabled = True | |
| from sympy.core.symbol import symbols | |
| from sympy.functions.elementary.exponential import log | |
| from sympy.functions.elementary.trigonometric import (cos, sin) | |
| x, y, z = symbols('x, y, z') | |
| def test_plot_2d(): | |
| from sympy.plotting.pygletplot import PygletPlot | |
| p = PygletPlot(x, [x, -5, 5, 4], visible=False) | |
| p.wait_for_calculations() | |
| def test_plot_2d_discontinuous(): | |
| from sympy.plotting.pygletplot import PygletPlot | |
| p = PygletPlot(1/x, [x, -1, 1, 2], visible=False) | |
| p.wait_for_calculations() | |
| def test_plot_3d(): | |
| from sympy.plotting.pygletplot import PygletPlot | |
| p = PygletPlot(x*y, [x, -5, 5, 5], [y, -5, 5, 5], visible=False) | |
| p.wait_for_calculations() | |
| def test_plot_3d_discontinuous(): | |
| from sympy.plotting.pygletplot import PygletPlot | |
| p = PygletPlot(1/x, [x, -3, 3, 6], [y, -1, 1, 1], visible=False) | |
| p.wait_for_calculations() | |
| def test_plot_2d_polar(): | |
| from sympy.plotting.pygletplot import PygletPlot | |
| p = PygletPlot(1/x, [x, -1, 1, 4], 'mode=polar', visible=False) | |
| p.wait_for_calculations() | |
| def test_plot_3d_cylinder(): | |
| from sympy.plotting.pygletplot import PygletPlot | |
| p = PygletPlot( | |
| 1/y, [x, 0, 6.282, 4], [y, -1, 1, 4], 'mode=polar;style=solid', | |
| visible=False) | |
| p.wait_for_calculations() | |
| def test_plot_3d_spherical(): | |
| from sympy.plotting.pygletplot import PygletPlot | |
| p = PygletPlot( | |
| 1, [x, 0, 6.282, 4], [y, 0, 3.141, | |
| 4], 'mode=spherical;style=wireframe', | |
| visible=False) | |
| p.wait_for_calculations() | |
| def test_plot_2d_parametric(): | |
| from sympy.plotting.pygletplot import PygletPlot | |
| p = PygletPlot(sin(x), cos(x), [x, 0, 6.282, 4], visible=False) | |
| p.wait_for_calculations() | |
| def test_plot_3d_parametric(): | |
| from sympy.plotting.pygletplot import PygletPlot | |
| p = PygletPlot(sin(x), cos(x), x/5.0, [x, 0, 6.282, 4], visible=False) | |
| p.wait_for_calculations() | |
| def _test_plot_log(): | |
| from sympy.plotting.pygletplot import PygletPlot | |
| p = PygletPlot(log(x), [x, 0, 6.282, 4], 'mode=polar', visible=False) | |
| p.wait_for_calculations() | |
| def test_plot_integral(): | |
| # Make sure it doesn't treat x as an independent variable | |
| from sympy.plotting.pygletplot import PygletPlot | |
| from sympy.integrals.integrals import Integral | |
| p = PygletPlot(Integral(z*x, (x, 1, z), (z, 1, y)), visible=False) | |
| p.wait_for_calculations() | |