| from sympy.core.symbol import Symbol | |
| from sympy.polys.polytools import (pquo, prem, sturm, subresultants) | |
| from sympy.matrices import Matrix | |
| from sympy.polys.subresultants_qq_zz import (sylvester, res, res_q, res_z, bezout, | |
| subresultants_sylv, modified_subresultants_sylv, | |
| subresultants_bezout, modified_subresultants_bezout, | |
| backward_eye, | |
| sturm_pg, sturm_q, sturm_amv, euclid_pg, euclid_q, | |
| euclid_amv, modified_subresultants_pg, subresultants_pg, | |
| subresultants_amv_q, quo_z, rem_z, subresultants_amv, | |
| modified_subresultants_amv, subresultants_rem, | |
| subresultants_vv, subresultants_vv_2) | |
| def test_sylvester(): | |
| x = Symbol('x') | |
| assert sylvester(x**3 -7, 0, x) == sylvester(x**3 -7, 0, x, 1) == Matrix([[0]]) | |
| assert sylvester(0, x**3 -7, x) == sylvester(0, x**3 -7, x, 1) == Matrix([[0]]) | |
| assert sylvester(x**3 -7, 0, x, 2) == Matrix([[0]]) | |
| assert sylvester(0, x**3 -7, x, 2) == Matrix([[0]]) | |
| assert sylvester(x**3 -7, 7, x).det() == sylvester(x**3 -7, 7, x, 1).det() == 343 | |
| assert sylvester(7, x**3 -7, x).det() == sylvester(7, x**3 -7, x, 1).det() == 343 | |
| assert sylvester(x**3 -7, 7, x, 2).det() == -343 | |
| assert sylvester(7, x**3 -7, x, 2).det() == 343 | |
| assert sylvester(3, 7, x).det() == sylvester(3, 7, x, 1).det() == sylvester(3, 7, x, 2).det() == 1 | |
| assert sylvester(3, 0, x).det() == sylvester(3, 0, x, 1).det() == sylvester(3, 0, x, 2).det() == 1 | |
| assert sylvester(x - 3, x - 8, x) == sylvester(x - 3, x - 8, x, 1) == sylvester(x - 3, x - 8, x, 2) == Matrix([[1, -3], [1, -8]]) | |
| assert sylvester(x**3 - 7*x + 7, 3*x**2 - 7, x) == sylvester(x**3 - 7*x + 7, 3*x**2 - 7, x, 1) == Matrix([[1, 0, -7, 7, 0], [0, 1, 0, -7, 7], [3, 0, -7, 0, 0], [0, 3, 0, -7, 0], [0, 0, 3, 0, -7]]) | |
| assert sylvester(x**3 - 7*x + 7, 3*x**2 - 7, x, 2) == Matrix([ | |
| [1, 0, -7, 7, 0, 0], [0, 3, 0, -7, 0, 0], [0, 1, 0, -7, 7, 0], [0, 0, 3, 0, -7, 0], [0, 0, 1, 0, -7, 7], [0, 0, 0, 3, 0, -7]]) | |
| def test_subresultants_sylv(): | |
| x = Symbol('x') | |
| p = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5 | |
| q = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21 | |
| assert subresultants_sylv(p, q, x) == subresultants(p, q, x) | |
| assert subresultants_sylv(p, q, x)[-1] == res(p, q, x) | |
| assert subresultants_sylv(p, q, x) != euclid_amv(p, q, x) | |
| amv_factors = [1, 1, -1, 1, -1, 1] | |
| assert subresultants_sylv(p, q, x) == [i*j for i, j in zip(amv_factors, modified_subresultants_amv(p, q, x))] | |
| p = x**3 - 7*x + 7 | |
| q = 3*x**2 - 7 | |
| assert subresultants_sylv(p, q, x) == euclid_amv(p, q, x) | |
| def test_modified_subresultants_sylv(): | |
| x = Symbol('x') | |
| p = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5 | |
| q = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21 | |
| amv_factors = [1, 1, -1, 1, -1, 1] | |
| assert modified_subresultants_sylv(p, q, x) == [i*j for i, j in zip(amv_factors, subresultants_amv(p, q, x))] | |
| assert modified_subresultants_sylv(p, q, x)[-1] != res_q(p + x**8, q, x) | |
| assert modified_subresultants_sylv(p, q, x) != sturm_amv(p, q, x) | |
| p = x**3 - 7*x + 7 | |
| q = 3*x**2 - 7 | |
| assert modified_subresultants_sylv(p, q, x) == sturm_amv(p, q, x) | |
| assert modified_subresultants_sylv(-p, q, x) != sturm_amv(-p, q, x) | |
| def test_res(): | |
| x = Symbol('x') | |
| assert res(3, 5, x) == 1 | |
| def test_res_q(): | |
| x = Symbol('x') | |
| assert res_q(3, 5, x) == 1 | |
| def test_res_z(): | |
| x = Symbol('x') | |
| assert res_z(3, 5, x) == 1 | |
| assert res(3, 5, x) == res_q(3, 5, x) == res_z(3, 5, x) | |
| def test_bezout(): | |
| x = Symbol('x') | |
| p = -2*x**5+7*x**3+9*x**2-3*x+1 | |
| q = -10*x**4+21*x**2+18*x-3 | |
| assert bezout(p, q, x, 'bz').det() == sylvester(p, q, x, 2).det() | |
| assert bezout(p, q, x, 'bz').det() != sylvester(p, q, x, 1).det() | |
| assert bezout(p, q, x, 'prs') == backward_eye(5) * bezout(p, q, x, 'bz') * backward_eye(5) | |
| def test_subresultants_bezout(): | |
| x = Symbol('x') | |
| p = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5 | |
| q = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21 | |
| assert subresultants_bezout(p, q, x) == subresultants(p, q, x) | |
| assert subresultants_bezout(p, q, x)[-1] == sylvester(p, q, x).det() | |
| assert subresultants_bezout(p, q, x) != euclid_amv(p, q, x) | |
| amv_factors = [1, 1, -1, 1, -1, 1] | |
| assert subresultants_bezout(p, q, x) == [i*j for i, j in zip(amv_factors, modified_subresultants_amv(p, q, x))] | |
| p = x**3 - 7*x + 7 | |
| q = 3*x**2 - 7 | |
| assert subresultants_bezout(p, q, x) == euclid_amv(p, q, x) | |
| def test_modified_subresultants_bezout(): | |
| x = Symbol('x') | |
| p = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5 | |
| q = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21 | |
| amv_factors = [1, 1, -1, 1, -1, 1] | |
| assert modified_subresultants_bezout(p, q, x) == [i*j for i, j in zip(amv_factors, subresultants_amv(p, q, x))] | |
| assert modified_subresultants_bezout(p, q, x)[-1] != sylvester(p + x**8, q, x).det() | |
| assert modified_subresultants_bezout(p, q, x) != sturm_amv(p, q, x) | |
| p = x**3 - 7*x + 7 | |
| q = 3*x**2 - 7 | |
| assert modified_subresultants_bezout(p, q, x) == sturm_amv(p, q, x) | |
| assert modified_subresultants_bezout(-p, q, x) != sturm_amv(-p, q, x) | |
| def test_sturm_pg(): | |
| x = Symbol('x') | |
| p = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5 | |
| q = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21 | |
| assert sturm_pg(p, q, x)[-1] != sylvester(p, q, x, 2).det() | |
| sam_factors = [1, 1, -1, -1, 1, 1] | |
| assert sturm_pg(p, q, x) == [i*j for i,j in zip(sam_factors, euclid_pg(p, q, x))] | |
| p = -9*x**5 - 5*x**3 - 9 | |
| q = -45*x**4 - 15*x**2 | |
| assert sturm_pg(p, q, x, 1)[-1] == sylvester(p, q, x, 1).det() | |
| assert sturm_pg(p, q, x)[-1] != sylvester(p, q, x, 2).det() | |
| assert sturm_pg(-p, q, x)[-1] == sylvester(-p, q, x, 2).det() | |
| assert sturm_pg(-p, q, x) == modified_subresultants_pg(-p, q, x) | |
| def test_sturm_q(): | |
| x = Symbol('x') | |
| p = x**3 - 7*x + 7 | |
| q = 3*x**2 - 7 | |
| assert sturm_q(p, q, x) == sturm(p) | |
| assert sturm_q(-p, -q, x) != sturm(-p) | |
| def test_sturm_amv(): | |
| x = Symbol('x') | |
| p = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5 | |
| q = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21 | |
| assert sturm_amv(p, q, x)[-1] != sylvester(p, q, x, 2).det() | |
| sam_factors = [1, 1, -1, -1, 1, 1] | |
| assert sturm_amv(p, q, x) == [i*j for i,j in zip(sam_factors, euclid_amv(p, q, x))] | |
| p = -9*x**5 - 5*x**3 - 9 | |
| q = -45*x**4 - 15*x**2 | |
| assert sturm_amv(p, q, x, 1)[-1] == sylvester(p, q, x, 1).det() | |
| assert sturm_amv(p, q, x)[-1] != sylvester(p, q, x, 2).det() | |
| assert sturm_amv(-p, q, x)[-1] == sylvester(-p, q, x, 2).det() | |
| assert sturm_pg(-p, q, x) == modified_subresultants_pg(-p, q, x) | |
| def test_euclid_pg(): | |
| x = Symbol('x') | |
| p = x**6+x**5-x**4-x**3+x**2-x+1 | |
| q = 6*x**5+5*x**4-4*x**3-3*x**2+2*x-1 | |
| assert euclid_pg(p, q, x)[-1] == sylvester(p, q, x).det() | |
| assert euclid_pg(p, q, x) == subresultants_pg(p, q, x) | |
| p = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5 | |
| q = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21 | |
| assert euclid_pg(p, q, x)[-1] != sylvester(p, q, x, 2).det() | |
| sam_factors = [1, 1, -1, -1, 1, 1] | |
| assert euclid_pg(p, q, x) == [i*j for i,j in zip(sam_factors, sturm_pg(p, q, x))] | |
| def test_euclid_q(): | |
| x = Symbol('x') | |
| p = x**3 - 7*x + 7 | |
| q = 3*x**2 - 7 | |
| assert euclid_q(p, q, x)[-1] == -sturm(p)[-1] | |
| def test_euclid_amv(): | |
| x = Symbol('x') | |
| p = x**3 - 7*x + 7 | |
| q = 3*x**2 - 7 | |
| assert euclid_amv(p, q, x)[-1] == sylvester(p, q, x).det() | |
| assert euclid_amv(p, q, x) == subresultants_amv(p, q, x) | |
| p = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5 | |
| q = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21 | |
| assert euclid_amv(p, q, x)[-1] != sylvester(p, q, x, 2).det() | |
| sam_factors = [1, 1, -1, -1, 1, 1] | |
| assert euclid_amv(p, q, x) == [i*j for i,j in zip(sam_factors, sturm_amv(p, q, x))] | |
| def test_modified_subresultants_pg(): | |
| x = Symbol('x') | |
| p = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5 | |
| q = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21 | |
| amv_factors = [1, 1, -1, 1, -1, 1] | |
| assert modified_subresultants_pg(p, q, x) == [i*j for i, j in zip(amv_factors, subresultants_pg(p, q, x))] | |
| assert modified_subresultants_pg(p, q, x)[-1] != sylvester(p + x**8, q, x).det() | |
| assert modified_subresultants_pg(p, q, x) != sturm_pg(p, q, x) | |
| p = x**3 - 7*x + 7 | |
| q = 3*x**2 - 7 | |
| assert modified_subresultants_pg(p, q, x) == sturm_pg(p, q, x) | |
| assert modified_subresultants_pg(-p, q, x) != sturm_pg(-p, q, x) | |
| def test_subresultants_pg(): | |
| x = Symbol('x') | |
| p = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5 | |
| q = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21 | |
| assert subresultants_pg(p, q, x) == subresultants(p, q, x) | |
| assert subresultants_pg(p, q, x)[-1] == sylvester(p, q, x).det() | |
| assert subresultants_pg(p, q, x) != euclid_pg(p, q, x) | |
| amv_factors = [1, 1, -1, 1, -1, 1] | |
| assert subresultants_pg(p, q, x) == [i*j for i, j in zip(amv_factors, modified_subresultants_amv(p, q, x))] | |
| p = x**3 - 7*x + 7 | |
| q = 3*x**2 - 7 | |
| assert subresultants_pg(p, q, x) == euclid_pg(p, q, x) | |
| def test_subresultants_amv_q(): | |
| x = Symbol('x') | |
| p = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5 | |
| q = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21 | |
| assert subresultants_amv_q(p, q, x) == subresultants(p, q, x) | |
| assert subresultants_amv_q(p, q, x)[-1] == sylvester(p, q, x).det() | |
| assert subresultants_amv_q(p, q, x) != euclid_amv(p, q, x) | |
| amv_factors = [1, 1, -1, 1, -1, 1] | |
| assert subresultants_amv_q(p, q, x) == [i*j for i, j in zip(amv_factors, modified_subresultants_amv(p, q, x))] | |
| p = x**3 - 7*x + 7 | |
| q = 3*x**2 - 7 | |
| assert subresultants_amv(p, q, x) == euclid_amv(p, q, x) | |
| def test_rem_z(): | |
| x = Symbol('x') | |
| p = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5 | |
| q = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21 | |
| assert rem_z(p, -q, x) != prem(p, -q, x) | |
| def test_quo_z(): | |
| x = Symbol('x') | |
| p = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5 | |
| q = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21 | |
| assert quo_z(p, -q, x) != pquo(p, -q, x) | |
| y = Symbol('y') | |
| q = 3*x**6 + 5*y**4 - 4*x**2 - 9*x + 21 | |
| assert quo_z(p, -q, x) == pquo(p, -q, x) | |
| def test_subresultants_amv(): | |
| x = Symbol('x') | |
| p = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5 | |
| q = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21 | |
| assert subresultants_amv(p, q, x) == subresultants(p, q, x) | |
| assert subresultants_amv(p, q, x)[-1] == sylvester(p, q, x).det() | |
| assert subresultants_amv(p, q, x) != euclid_amv(p, q, x) | |
| amv_factors = [1, 1, -1, 1, -1, 1] | |
| assert subresultants_amv(p, q, x) == [i*j for i, j in zip(amv_factors, modified_subresultants_amv(p, q, x))] | |
| p = x**3 - 7*x + 7 | |
| q = 3*x**2 - 7 | |
| assert subresultants_amv(p, q, x) == euclid_amv(p, q, x) | |
| def test_modified_subresultants_amv(): | |
| x = Symbol('x') | |
| p = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5 | |
| q = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21 | |
| amv_factors = [1, 1, -1, 1, -1, 1] | |
| assert modified_subresultants_amv(p, q, x) == [i*j for i, j in zip(amv_factors, subresultants_amv(p, q, x))] | |
| assert modified_subresultants_amv(p, q, x)[-1] != sylvester(p + x**8, q, x).det() | |
| assert modified_subresultants_amv(p, q, x) != sturm_amv(p, q, x) | |
| p = x**3 - 7*x + 7 | |
| q = 3*x**2 - 7 | |
| assert modified_subresultants_amv(p, q, x) == sturm_amv(p, q, x) | |
| assert modified_subresultants_amv(-p, q, x) != sturm_amv(-p, q, x) | |
| def test_subresultants_rem(): | |
| x = Symbol('x') | |
| p = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5 | |
| q = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21 | |
| assert subresultants_rem(p, q, x) == subresultants(p, q, x) | |
| assert subresultants_rem(p, q, x)[-1] == sylvester(p, q, x).det() | |
| assert subresultants_rem(p, q, x) != euclid_amv(p, q, x) | |
| amv_factors = [1, 1, -1, 1, -1, 1] | |
| assert subresultants_rem(p, q, x) == [i*j for i, j in zip(amv_factors, modified_subresultants_amv(p, q, x))] | |
| p = x**3 - 7*x + 7 | |
| q = 3*x**2 - 7 | |
| assert subresultants_rem(p, q, x) == euclid_amv(p, q, x) | |
| def test_subresultants_vv(): | |
| x = Symbol('x') | |
| p = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5 | |
| q = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21 | |
| assert subresultants_vv(p, q, x) == subresultants(p, q, x) | |
| assert subresultants_vv(p, q, x)[-1] == sylvester(p, q, x).det() | |
| assert subresultants_vv(p, q, x) != euclid_amv(p, q, x) | |
| amv_factors = [1, 1, -1, 1, -1, 1] | |
| assert subresultants_vv(p, q, x) == [i*j for i, j in zip(amv_factors, modified_subresultants_amv(p, q, x))] | |
| p = x**3 - 7*x + 7 | |
| q = 3*x**2 - 7 | |
| assert subresultants_vv(p, q, x) == euclid_amv(p, q, x) | |
| def test_subresultants_vv_2(): | |
| x = Symbol('x') | |
| p = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5 | |
| q = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21 | |
| assert subresultants_vv_2(p, q, x) == subresultants(p, q, x) | |
| assert subresultants_vv_2(p, q, x)[-1] == sylvester(p, q, x).det() | |
| assert subresultants_vv_2(p, q, x) != euclid_amv(p, q, x) | |
| amv_factors = [1, 1, -1, 1, -1, 1] | |
| assert subresultants_vv_2(p, q, x) == [i*j for i, j in zip(amv_factors, modified_subresultants_amv(p, q, x))] | |
| p = x**3 - 7*x + 7 | |
| q = 3*x**2 - 7 | |
| assert subresultants_vv_2(p, q, x) == euclid_amv(p, q, x) | |