| from sympy.unify.rewrite import rewriterule | |
| from sympy.core.basic import Basic | |
| from sympy.core.singleton import S | |
| from sympy.core.symbol import Symbol | |
| from sympy.functions.elementary.trigonometric import sin | |
| from sympy.abc import x, y | |
| from sympy.strategies.rl import rebuild | |
| from sympy.assumptions import Q | |
| p, q = Symbol('p'), Symbol('q') | |
| def test_simple(): | |
| rl = rewriterule(Basic(p, S(1)), Basic(p, S(2)), variables=(p,)) | |
| assert list(rl(Basic(S(3), S(1)))) == [Basic(S(3), S(2))] | |
| p1 = p**2 | |
| p2 = p**3 | |
| rl = rewriterule(p1, p2, variables=(p,)) | |
| expr = x**2 | |
| assert list(rl(expr)) == [x**3] | |
| def test_simple_variables(): | |
| rl = rewriterule(Basic(x, S(1)), Basic(x, S(2)), variables=(x,)) | |
| assert list(rl(Basic(S(3), S(1)))) == [Basic(S(3), S(2))] | |
| rl = rewriterule(x**2, x**3, variables=(x,)) | |
| assert list(rl(y**2)) == [y**3] | |
| def test_moderate(): | |
| p1 = p**2 + q**3 | |
| p2 = (p*q)**4 | |
| rl = rewriterule(p1, p2, (p, q)) | |
| expr = x**2 + y**3 | |
| assert list(rl(expr)) == [(x*y)**4] | |
| def test_sincos(): | |
| p1 = sin(p)**2 + sin(p)**2 | |
| p2 = 1 | |
| rl = rewriterule(p1, p2, (p, q)) | |
| assert list(rl(sin(x)**2 + sin(x)**2)) == [1] | |
| assert list(rl(sin(y)**2 + sin(y)**2)) == [1] | |
| def test_Exprs_ok(): | |
| rl = rewriterule(p+q, q+p, (p, q)) | |
| next(rl(x+y)).is_commutative | |
| str(next(rl(x+y))) | |
| def test_condition_simple(): | |
| rl = rewriterule(x, x+1, [x], lambda x: x < 10) | |
| assert not list(rl(S(15))) | |
| assert rebuild(next(rl(S(5)))) == 6 | |
| def test_condition_multiple(): | |
| rl = rewriterule(x + y, x**y, [x,y], lambda x, y: x.is_integer) | |
| a = Symbol('a') | |
| b = Symbol('b', integer=True) | |
| expr = a + b | |
| assert list(rl(expr)) == [b**a] | |
| c = Symbol('c', integer=True) | |
| d = Symbol('d', integer=True) | |
| assert set(rl(c + d)) == {c**d, d**c} | |
| def test_assumptions(): | |
| rl = rewriterule(x + y, x**y, [x, y], assume=Q.integer(x)) | |
| a, b = map(Symbol, 'ab') | |
| expr = a + b | |
| assert list(rl(expr, Q.integer(b))) == [b**a] | |