File size: 10,554 Bytes
576037a 9a62bc1 576037a 36770cc 33c702b 576037a 2aa68c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
---
license: cc-by-2.0
pretty_name: Coefficients on Kazhdan–Lusztig polynomials for permutations of size 5
---
# The Coefficients of Kazhdan-Lusztig Polynomials for Permutations of Size 5
Kazhdan-Lusztig (KL) polynomials are polynomials in a variable \\(q\\) and
with integer coefficients that (for our purposes) are indexed by a pair of permutations [1].
We will write the KL polynomial associated with permutations \\(\sigma\\) and \\(\nu\\) as
\\(P_{\sigma,\nu}(q)\\). For example, the KL polynomial associated with permutations
\\(\sigma = 1 \; 4 \; 3 \; 2 \; 7 \; 6 \; 5 \; 10 \; 9 \; 8 \; 11\\) and
\\(\nu = 4 \; 6 \; 7 \; 8 \; 9 \; 10 \; 1 \; 11 \; 2 \; 3 \; 5\\) is
\\(P_{\sigma,\nu}(q) = 1 + 16q + 103q^2 + 337q^3 + 566q^4 + 529q^5 + 275q^6 + 66q^7 + 3q^8\\)
(see [here](https://gswarrin.w3.uvm.edu/research/klc/klc.html) for efficient software to compute
these polynomials). KL polynomials have deep connections throughout several areas of mathematics. For example,
KL polynomials are related to the dimensions of intersection homology in Schubert calculus,
the study of the Hecke algebra, and representation theory of the symmetric group. They
can be computed via a recursive formula [[1]](https://link.springer.com/article/10.1007/BF01390031),
nevertheless, in many ways they remain mysterious. For instance, there is no known closed
formula for the degree of \\(P_{\sigma,\nu}(q)\\).
One family of questions revolve around the coefficients of \\(P_{\sigma,\nu}(q)\\).
For instance, it has been hypothesized that the coefficient on the largest possible monomial term
\\(q^{(\ell(\sigma) - \ell(\nu)-1)/2}\\) (where \\(\ell(x)\\) is a statistic of the
permutation \\(x\\) called the *length* of the permutation), which is known as the
\\(\mu\\)-coefficient, has a combinatorial interpretation but currently this is not
known. Better understanding this and other coefficients is of significant
interest to mathematicians from a range of fields.
## Dataset details
Each instance in this dataset consists of a pair of permutations of \\(n,x \in S_n\\)
along with the coefficients of the polynomial \\(P_{x,w}(q)\\). If \\(x = \;1 \;2 \;3\; 4\; 5\; 6\\),
\\(w=4 \;5\; 6\; 1 \;2 \;3\\) and \\(P_{v,w}(q) = 1 + 4q + 4q^2 + q^3\\)
then the coefficients field is written as `1, 4, 4, 1`. Note that coefficients are listed
by increasing degree of the power of \\(q\\) (e.g., the coefficient on \\(1\\) comes first,
then the coefficient on \\(q\\), then the coefficient on \\(q^2\\), etc.)
We summarize the limited number of values of coefficients on \\(P_{x,w}(q)\\) take when \\(x, w \in S_5\\).
**Constant Terms:**
| | 0 | 1 | Total number of instances |
|----------|----------|----------|----------|
| Train | 8,496 | 3,024 | 11,520 |
| Test | 2,123 | 757 | 2,880 |
**Coefficients on \\(q\\):**
| | 0 | 1 | 2 | Total number of instances |
|----------|----------|----------|----------|----------|
| Train | 11,219 | 267 | 34 | 11,520 |
| Test | 2,793 | 77 | 10 | 2,880 |
**Coefficient on \\(q^2\\):**
| | 0 | 1 | Total number of instances |
|----------|----------|----------|----------|
| Train | 11,514 | 6 | 11,520 |
| Test | 2,876 | 4 | 2,880 |
### Kazhdan-Lusztig Polynomials for Permutations of \\(6\\) elements
We summarize the limited number of values coefficients on \\(P_{x,w}(q)\\) take when \\(x, w \in S_6\\).
**Constant Terms:**
| | 0 | 1 | Total number of instances |
|----------|----------|----------|----------|
| Train | 336,071 | 78,649 | 414,720 |
| Test | 83,922 | 19,758 | 103,680 |
**Coefficients on \\(q\\):**
| | 0 | 1 | 2 | 3 | 4 | Total number of instances |
|----------|----------|----------|----------|----------|----------|----------|
| Train | 397,386 | 13,253 | 3,483 | 535 | 63 | 414,720 |
| Test | 99,354 | 3,311 | 883 | 117 | 15 | 103,680 |
**Coefficient on \\(q^2\\):**
| | 0 | 1 | 2 | 3 | 4 | Total number of instances |
|----------|----------|----------|----------|----------|----------|----------|
| Train | 412,707 | 1,705 | 242 | 40 | 26 | 414,720 |
| Test | 103,177 | 441 | 46 | 8 | 8 | 103,680 |
**Coefficient on \\(q^3\\):**
| | 0 | 1 | Total number of instances |
|----------|----------|----------|----------|
| Train | 414,688 | 32 | 414,720 |
| Test | 103,670 | 10 | 103,680 |
### Kazhdan-Lusztig Polynomials for Permutations of \\(7\\) elements
We summarize the limited number of values coefficients on \\(P_{x,w}(q)\\) take when \\(x, w \in S_7\\).
**Constant Terms:**
| | 0 | 1 | Total number of instances |
|----------|----------|----------|----------|
| Train | 17,479,910 | 2,841,370 | 20,321,280 |
| Test | 4,370,771 | 709,549 | 5,080,320 |
**Coefficients on \\(q\\):**
| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | Total number of instances |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Train | 19,291,150 | 660,600 | 266,591 | 80,173 | 18,834 | 3,221 | 711 | 20,321,280 |
| Test | 4,822,214 | 165,768 | 66,593 | 19,963 | 4,762 | 819 | 201 | 5,080,320 |
**Coefficient on \\(q^2\\):**
| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | Total number of instances |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Train | 20,072,738 | 170,412 | 46,226 | 16,227 | 7,621 | 4,023 | 1,287 | 1,153 | 785 | 350 | 152 | 139 | 121 | 42 | 4 | 20,321,280 |
| Test | 5,017,962 | 42,748 | 11,568 | 4,021 | 1,905 | 1,065 | 349 | 287 | 183 | 86 | 40 | 37 | 47 | 22 | 5,080,320 |
**Coefficient on \\(q^3\\):**
| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 15 | Total number of instances |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Train | 20,291,535 | 22,094 | 4,779 | 1,660 | 590 | 195 | 206 | 115 | 34 | 26 | 24 | 18 | 4 | 20,321,280 |
| Test | 507,2831 | 5,498 | 1,213 | 442 | 146 | 61 | 50 | 37 | 14 | 6 | 8 | 14 | 5,080,320 |
**Coefficient on \\(q^4\\):**
| | 0 | 1 | Total number of instances |
|----------|----------|----------|----------|
| Train | 17,479,910 | 2,841,370 | 20,321,280 |
| Test | 4,370,771 | 709,549 | 5,080,320 |
## Data Generation
Datasets were generated using C code from Greg Warrington's
[website](https://gswarrin.w3.uvm.edu/research/klc/klc.html). The code we used can be found
[here](https://github.com/pnnl/ML4AlgComb/tree/master/kl-polynomial_coefficients).
## Task
**Math question:** Generate conjectures around the properties of coefficients appearing on KL polynomials.
**Narrow ML task:** Predict the coefficients of \\(P_{x,w}(q)\\) given \\(x\\) and \\(w\\).
We break this up into a separate task for each coefficient though one could
choose to predict all simultaneously. Since there are generally very few
different integers that arise as coefficients (at least in these small examples),
we frame this problem as one of classification.
While the classification task as framed does not capture the broader math question exactly,
illuminating connections between \\(x\\), \\(w\\), and the coefficients of \\(P_{x,w}(q)\\)
has the potential to yield critical insights.
## Small model performance
Since there are many possible tasks here, we did not run exhaustive hyperparameter searches.
Instead, we ran ReLU MLPs with depth 4, width 256, and learning rate 0.0005.
### Kazhdan-Lusztig Polynomials for Permutations of \\(5\\) elements
Accuracy predicting coefficients for permutations of 5 elements:
| Coefficient | MLP | Transformer | Guessing largest class |
|----------|----------|-----------|------------|
| \\(1\\) | \\(99.8\% \pm 0.2\%\\) | \\(99.9\% \pm 0.1\%\\) | \\(73.7\%\\) |
| \\(q\\) | \\(99.5\% \pm 0.4\%\\) | \\(99.2\% \pm 1.0\%\\) | \\(97.0\%\\) |
| \\(q^2\\) | \\(99.9\% \pm 0.1\%\\) | \\(100.0\% \pm 0.0\%\\) | \\(99.9\%\\) |
The associated macro F1-scores are:
| Coefficient | MLP | Transformer |
|----------|----------|-----------|
| \\(1\\) | \\(99.7\% \pm 0.1\%\\) | \\(99.9\% \pm 0.4\%\\) |
| \\(q\\) | \\(93.9\% \pm 3.7\%\\) | \\(92.7\% \pm 7.6\%\\) |
| \\(q^2\\) | \\(50.0\% \pm 0.0\%\\) | \\(100.0\% \pm 0.0\%\\) |
### Kazhdan-Lusztig Polynomials for Permutations of \\(6\\) elements
Accuracy predicting coefficients for permutations of 6 elements:
| Coefficient | MLP | Transformer | Guessing largest class |
|----------|----------|-----------|------------|
| \\(1\\) | \\(99.9\% \pm 0.0\%\\) | \\(100.0\% \pm 0.0\%\\) | \\(80.9\%\\)|
| \\(q\\) | \\(99.9\% \pm 0.0\%\\) | \\(99.9\% \pm 0.0\%\\) | \\(95.8\%\\) |
| \\(q^2\\) | \\(99.9\% \pm 0.0\%\\) | \\(99.9\% \pm 0.0\%\\) | \\(99.5\%\\) |
| \\(q^3\\) | \\(99.9\% \pm 0.0\%\\) | \\(99.9\% \pm 0.0\%\\) | \\(99.9\%\\) |
The associated macro F1-scores are:
| Coefficient | MLP | Transformer |
|----------|----------|-----------|
| \\(1\\) | \\(99.9\% \pm 0.0\%\\) | \\(100.0\% \pm 0.0\%\\) |
| \\(q\\) | \\(99.0\% \pm 1.5\%\\) | \\(98.0\% \pm 3.7\%\\) |
| \\(q^2\\) | \\(97.4\% \pm 5.2\%\\) | \\(98.0\% \pm 3.7\%\\) |
| \\(q^3\\) | \\(87.9\% \pm 4.5\%\\) | \\(88.3\% \pm 17.1\%\\) |
The \\(\pm\\) signs indicate 95% confidence intervals from random weight initialization and training.
## Further information
- **Curated by:** Henry Kvinge
- **Funded by:** Pacific Northwest National Laboratory
- **Language(s) (NLP):** NA
- **License:** CC-by-2.0
## Citation
**BibTeX:**
@article{chau2025machine,
title={Machine learning meets algebraic combinatorics: A suite of datasets capturing research-level conjecturing ability in pure mathematics},
author={Chau, Herman and Jenne, Helen and Brown, Davis and He, Jesse and Raugas, Mark and Billey, Sara and Kvinge, Henry},
journal={arXiv preprint arXiv:2503.06366},
year={2025}
}
**APA:**
Chau, H., Jenne, H., Brown, D., He, J., Raugas, M., Billey, S., & Kvinge, H. (2025). Machine learning meets algebraic combinatorics: A suite of datasets capturing research-level conjecturing ability in pure mathematics. arXiv preprint arXiv:2503.06366.
## Dataset Card Contact
Henry Kvinge, acdbenchdataset@gmail.com
## References
[1] Kazhdan, David, and George Lusztig. "Representations of Coxeter groups and Hecke algebras." Inventiones mathematicae 53.2 (1979): 165-184.
[2] Warrington, Gregory S. "Equivalence classes for the μ-coefficient of Kazhdan–Lusztig polynomials in Sn." Experimental Mathematics 20.4 (2011): 457-466. |