ACDRepo commited on
Commit
66371b9
·
verified ·
1 Parent(s): a2b23ad

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -22
README.md CHANGED
@@ -59,40 +59,25 @@ All structure constants in this case are either 0 or 1 (so the classification pr
59
  | Train | 851 | 833 | 1,684 |
60
  | Test | 201 | 220 | 421 |
61
 
62
-
63
- All structure constants in this case are either 0, 1, or 2.
64
-
65
- | | 0 | 1 | 2 | Total number of instances |
66
- |----------|----------|----------|----------|----------|
67
- | Train | 42,831 | 42,619 | 170 | 85,620 |
68
- | Test | 10,681 | 10,680 | 44 | 21,405 |
69
-
70
-
71
- All structure constants in this case are either 0, 1, 2, 3, 4, or 5.
72
-
73
- | | 0 | 1 | 2 | 3 | 4 | 5 | Total number of instances |
74
- |----------|----------|----------|----------|----------|----------|----------|----------|
75
- | Train | 4,202,040 | 4,093,033 | 109,217 | 2,262 | 9 | 9 | 8,406,564 |
76
- | Test | 1,052,062 | 1,021,898 | 27,110 | 568 | 3 | 0 | 2,101,641 |
77
-
78
  ## Data generation
79
 
80
- The Sage notebook within this directory gives the code used to generate these datasets.
 
81
  The process involves:
82
-
83
  - For a chosen \\(n\\), compute the products \\(\mathfrak{S}_{\alpha} \mathfrak{S}_{\beta}\\) for \\(\alpha,\beta \in S_n\\).
84
- - For each of these pairs, extract and add to the dataset all non-zero structure constants \\(c^{\gamma_1}_{\alpha,\beta}, \dots, c^{\gamma_k}_{\alpha,\beta}\\)
85
  - Furthermore, for each \\(c^{\gamma_i}_{\alpha,\beta} \neq 0\\), randomly permute \\(\gamma_i \mapsto \gamma_i'\\) to find \\(c^{\gamma_i'}_{\alpha,\beta} = 0\\) and \\(c^{\gamma_i'}_{\alpha,\beta}\\) is not already in the dataset.
86
 
87
  ## Task
88
 
89
  **Math question:** Find a combinatorial interpretation of the structure constants \\(c_{\alpha,\beta}^\gamma\\)
90
- based on properties of \\(\alpha\\), \\(\beta\\), and \\(\gamma\\).
91
-
92
  **Narrow ML task:** Train a model that, given three permutations \\(\alpha, \beta, \gamma\\), can
93
- predict the associated structure constant \\(c^{\gamma}_{\alpha,\beta}\\).
 
94
 
95
  ## Small model performance
 
96
 
97
  | Size | Logistic regression | MLP | Transformer | Guessing majority class |
98
  |----------|----------|-----------|------------|------------|
 
59
  | Train | 851 | 833 | 1,684 |
60
  | Test | 201 | 220 | 421 |
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  ## Data generation
63
 
64
+ The Sage notebook within this [directory](https://github.com/pnnl/ML4AlgComb/tree/master/schubert_polynomial_structure)
65
+ gives the code used to generate these datasets.
66
  The process involves:
 
67
  - For a chosen \\(n\\), compute the products \\(\mathfrak{S}_{\alpha} \mathfrak{S}_{\beta}\\) for \\(\alpha,\beta \in S_n\\).
68
+ - For each of these pairs, extract and add to the dataset all non-zero structure constants \\(c^{\gamma_1}_{\alpha,\beta}, \dots, c^{\gamma_k}_{\alpha,\beta}\\).
69
  - Furthermore, for each \\(c^{\gamma_i}_{\alpha,\beta} \neq 0\\), randomly permute \\(\gamma_i \mapsto \gamma_i'\\) to find \\(c^{\gamma_i'}_{\alpha,\beta} = 0\\) and \\(c^{\gamma_i'}_{\alpha,\beta}\\) is not already in the dataset.
70
 
71
  ## Task
72
 
73
  **Math question:** Find a combinatorial interpretation of the structure constants \\(c_{\alpha,\beta}^\gamma\\)
74
+ based on properties of \\(\alpha\\), \\(\beta\\), and \\(\gamma\\).
 
75
  **Narrow ML task:** Train a model that, given three permutations \\(\alpha, \beta, \gamma\\), can
76
+ predict the associated structure constant \\(c^{\gamma}_{\alpha,\beta}\\). Extract the rules
77
+ the model uses to make successful predictions.
78
 
79
  ## Small model performance
80
+ Model and training details can be found in our paper.
81
 
82
  | Size | Logistic regression | MLP | Transformer | Guessing majority class |
83
  |----------|----------|-----------|------------|------------|