ACDRepo commited on
Commit
b9295c3
·
verified ·
1 Parent(s): 9c958b4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +141 -3
README.md CHANGED
@@ -1,3 +1,141 @@
1
- ---
2
- license: cc-by-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-2.0
3
+ pretty_name: structure constants of schubert polynomials, n = 5
4
+ ---
5
+
6
+ # A Combinatorial Interpretation of Schubert Polynomial Structure Constants
7
+
8
+ Schubert polynomials [1,2,3] are a family of polynomials indexed by permutations of \\(S_n\\).
9
+ Developed to study the cohomology ring of the flag variety, they have deep connections to
10
+ algebraic geometry, Lie theory, and representation theory. Despite their geometric origins,
11
+ Schubert polynomials can be described combinatorially [4,5], making them a well-studied object
12
+ in algebraic combinatorics. An important open problem in the study of Schubert polynomials
13
+ is understanding their *structure constants*.
14
+
15
+ When two Schubert polynomials \\(\mathfrak{S}_{\alpha}\\) and \\(\mathfrak{S}_{\beta}\\)
16
+ (indexed by permutations \\(\alpha \in S_n\\) and \\(\beta \in S_m\\)) are multiplied,
17
+ their product can be written as a linear combination of Schubert polynomials
18
+ \\(\mathfrak{S}_{\alpha} \mathfrak{S}_{\beta} = \sum_{\gamma} c^{\gamma}_{\alpha \beta} \mathfrak{S}_{\gamma}\\).
19
+ Where the sum runs over permutations in \\(S_{n+m}\\). The question is whether the
20
+ \\(c^{\gamma}_{\alpha \beta}\\) (the *structure constants*) have a combinatorial interpretation.
21
+ To give an example of what we mean by combinatorial interpretation, when Schur polynomials
22
+ (which can be viewed as a specific case of Schubert polynomials) are multiplied together,
23
+ the coefficients in the resulting product are equal to the number of semistandard tableaux
24
+ satisfying certain properties.
25
+
26
+ ## Example
27
+
28
+ We multiply Schubert polynomials corresponding to permutations of \\(\{1,2,3\}\\),
29
+ \\(\alpha = 2 1 3\\) and \\(\beta = 1 3 2\\). Writing these in terms of indeterminants
30
+ \\(x_1\\), \\(x_2\\), and \\(x_3\\), we have \\(\mathfrak{S}_{\alpha} = x_1 + x_2\\)
31
+ and \\(\mathfrak{S}_{\beta} = x_1\\). Multiplying these together we get
32
+ \\(\mathfrak{S}_{\alpha}\mathfrak{S}_{\beta} = x_1^2 + x_1x_2\\). As
33
+ \\(\mathfrak{S}_{2 3 1} = x_1x_2\\) and \\(\mathfrak{S}_{3 1 2} = x_1^2\\) we can write
34
+ \\(\mathfrak{S}_{\alpha}\mathfrak{S}_{\beta} = \mathfrak{S}_{2 3 1} + \mathfrak{S}_{3 1 2}\\).
35
+ It follows that \\(c_{\alpha,\beta}^{\gamma} = 1\\) if \\(\gamma = 2 3 1\\) or \\(\gamma = 3 1 2\\)
36
+ and otherwise \\(c_{\alpha,\beta}^{\gamma} = 0\\).
37
+
38
+ ## Dataset
39
+ Each instance in this dataset is a triple of permutations \\((\alpha,\beta,\gamma)\\),
40
+ labeled by its coefficient \\(c^{\gamma}_{\alpha \beta}\\) in the expansion of the product
41
+ \\(\mathfrak{S}_{\alpha} \mathfrak{S}_{\beta}\\). We call permutations \\(\alpha\\) and \\(\beta\\)
42
+ *lower index permutations 1* and *2* respectively. We call \\(\gamma\\) the *upper index
43
+ permutation*. The datasets are organized so that
44
+ \\(\alpha\\) and \\(\beta\\) are always drawn from the symmetric group on \\(n\\) elements
45
+ (we provide datasets for \\(n = 3\\), \\(4\\), and \\(5\\)), but \\(\gamma\\) may belong to a
46
+ strictly larger symmetric group. Not all possible triples of permutations are included
47
+ since the vast majority of these would be zero. The dataset consists of an approximately
48
+ equal number of zero and nonzero coefficients (but they are not balanced between quantities
49
+ of non-zero coefficients).
50
+
51
+ **Statistics**
52
+
53
+ All structure constants in this case are either 0 or 1 (so the classification problem is binary).
54
+
55
+ | | 0 | 1 | Total number of instances |
56
+ |----------|----------|----------|----------|
57
+ | Train | 851 | 833 | 1,684 |
58
+ | Test | 201 | 220 | 421 |
59
+
60
+
61
+ All structure constants in this case are either 0, 1, or 2.
62
+
63
+ | | 0 | 1 | 2 | Total number of instances |
64
+ |----------|----------|----------|----------|----------|
65
+ | Train | 42,831 | 42,619 | 170 | 85,620 |
66
+ | Test | 10,681 | 10,680 | 44 | 21,405 |
67
+
68
+
69
+ All structure constants in this case are either 0, 1, 2, 3, 4, or 5.
70
+
71
+ | | 0 | 1 | 2 | 3 | 4 | 5 | Total number of instances |
72
+ |----------|----------|----------|----------|----------|----------|----------|----------|
73
+ | Train | 4,202,040 | 4,093,033 | 109,217 | 2,262 | 9 | 9 | 8,406,564 |
74
+ | Test | 1,052,062 | 1,021,898 | 27,110 | 568 | 3 | 0 | 2,101,641 |
75
+
76
+ ## Data generation
77
+
78
+ The Sage notebook within this directory gives the code used to generate these datasets.
79
+ The process involves:
80
+
81
+ - For a chosen \\(n\\), compute the products \\(\mathfrak{S}_{\alpha} \mathfrak{S}_{\beta}\\) for \\(\alpha,\beta \in S_n\\).
82
+ - For each of these pairs, extract and add to the dataset all non-zero structure constants \\(c^{\gamma_1}_{\alpha,\beta}, \dots, c^{\gamma_k}_{\alpha,\beta}\\)
83
+ - Furthermore, for each \\(c^{\gamma_i}_{\alpha,\beta} \neq 0\\), randomly permute \\(\gamma_i \mapsto \gamma_i'\\) to find \\(c^{\gamma_i'}_{\alpha,\beta} = 0\\) and \\(c^{\gamma_i'}_{\alpha,\beta}\\) is not already in the dataset.
84
+
85
+ ## Task
86
+
87
+ **Math question:** Find a combinatorial interpretation of the structure constants \\(c_{\alpha,\beta}^\gamma\\)
88
+ based on properties of \\(\alpha\\), \\(\beta\\), and \\(\gamma\\).
89
+
90
+ **Narrow ML task:** Train a model that, given three permutations \\(\alpha, \beta, \gamma\\), can
91
+ predict the associated structure constant \\(c^{\gamma}_{\alpha,\beta}\\).
92
+
93
+ ## Small model performance
94
+
95
+ | Size | Logistic regression | MLP | Transformer | Guessing majority class |
96
+ |----------|----------|-----------|------------|------------|
97
+ | \\(n= 4\\) | \\(88.8\%\\) | \\(93.1\% \pm 2.6\%\\) | \\(94.6\% \pm 1.0\%\\) | \\(52.3\%\\) |
98
+ | \\(n= 5\\) | \\(90.6\%\\) | \\(97.5\% \pm 0.2\%\\) | \\(96.2\% \pm 1.1\%\\) | \\(49.9\%\\) |
99
+ | \\(n= 6\\) | \\(89.7\%\\) | \\(99.8\% \pm 0.0\%\\) | \\(91.3\% \pm 8.0\%\\) | \\(50.1\%\\) |
100
+
101
+ The \\(\pm\\) signs indicate 95% confidence intervals from random weight initialization and training.
102
+
103
+ - **Curated by:** Henry Kvinge
104
+ - **Funded by:** Pacific Northwest National Laboratory
105
+ - **Language(s) (NLP):** NA
106
+ - **License:** CC-by-2.0
107
+
108
+ ### Dataset Sources
109
+
110
+ Data generation scripts can be found [here](https://github.com/pnnl/ML4AlgComb/tree/master/schubert_polynomial_structure).
111
+
112
+ - **Repository:** [ACD Repo](https://github.com/pnnl/ML4AlgComb/tree/master)
113
+
114
+ ## Citation
115
+
116
+ **BibTeX:**
117
+
118
+
119
+ @article{chau2025machine,
120
+ title={Machine learning meets algebraic combinatorics: A suite of datasets capturing research-level conjecturing ability in pure mathematics},
121
+ author={Chau, Herman and Jenne, Helen and Brown, Davis and He, Jesse and Raugas, Mark and Billey, Sara and Kvinge, Henry},
122
+ journal={arXiv preprint arXiv:2503.06366},
123
+ year={2025}
124
+ }
125
+
126
+
127
+ **APA:**
128
+
129
+ Chau, H., Jenne, H., Brown, D., He, J., Raugas, M., Billey, S., & Kvinge, H. (2025). Machine learning meets algebraic combinatorics: A suite of datasets capturing research-level conjecturing ability in pure mathematics. arXiv preprint arXiv:2503.06366.
130
+
131
+ ## Dataset Card Contact
132
+
133
+ Henry Kvinge, acdbenchdataset@gmail.com
134
+
135
+ ## References
136
+
137
+ \[1\] Bernstein, IMGI N., Israel M. Gel'fand, and Sergei I. Gel'fand. "Schubert cells and cohomology of the spaces G/P." Russian Mathematical Surveys 28.3 (1973): 1.
138
+ \[2\] Demazure, Michel. "Désingularisation des variétés de Schubert généralisées." Annales scientifiques de l'École Normale Supérieure. Vol. 7. No. 1. 1974.
139
+ \[3\] Lascoux, Alain, and Marcel-Paul Schützenberger. "Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux." CR Acad. Sci. Paris Sér. I Math 295.11 (1982): 629-633.
140
+ \[4\] Billey, Sara C., William Jockusch, and Richard P. Stanley. "Some combinatorial properties of Schubert polynomials." Journal of Algebraic Combinatorics 2.4 (1993): 345-374.
141
+ \[5\] Bergeron, Nantel, and Sara Billey. "RC-graphs and Schubert polynomials." Experimental Mathematics 2.4 (1993): 257-269.