ACDRepo commited on
Commit
90bbe18
·
verified ·
1 Parent(s): 4c18717

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +117 -3
README.md CHANGED
@@ -1,3 +1,117 @@
1
- ---
2
- license: cc-by-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-2.0
3
+ pretty_name: structure constants of schubert polynomials, n = 6
4
+ ---
5
+
6
+ # A Combinatorial Interpretation of Schubert Polynomial Structure Constants
7
+
8
+ Schubert polynomials [1,2,3] are a family of polynomials indexed by permutations of \\(S_n\\).
9
+ Developed to study the cohomology ring of the flag variety, they have deep connections to
10
+ algebraic geometry, Lie theory, and representation theory. Despite their geometric origins,
11
+ Schubert polynomials can be described combinatorially [4,5], making them a well-studied object
12
+ in algebraic combinatorics. An important open problem in the study of Schubert polynomials
13
+ is understanding their *structure constants*.
14
+ When two Schubert polynomials \\(\mathfrak{S}_{\alpha}\\) and \\(\mathfrak{S}_{\beta}\\)
15
+ (indexed by permutations \\(\alpha \in S_n\\) and \\(\beta \in S_m\\)) are multiplied,
16
+ their product can be written as a linear combination of Schubert polynomials
17
+ \\(\mathfrak{S}_{\alpha} \mathfrak{S}_{\beta} = \sum_{\gamma} c^{\gamma}_{\alpha \beta} \mathfrak{S}_{\gamma}\\).
18
+ Where the sum runs over permutations in \\(S_{n+m}\\). The question is whether the
19
+ \\(c^{\gamma}_{\alpha \beta}\\) (the *structure constants*) have a combinatorial interpretation.
20
+ To give an example of what we mean by combinatorial interpretation, when Schur polynomials
21
+ (which can be viewed as a specific case of Schubert polynomials) are multiplied together,
22
+ the coefficients in the resulting product are equal to the number of semistandard tableaux
23
+ satisfying certain properties.
24
+
25
+ ## Example
26
+
27
+ We multiply Schubert polynomials corresponding to permutations of \\(\{1,2,3\}\\),
28
+ \\(\alpha = 2 1 3\\) and \\(\beta = 1 3 2\\). Writing these in terms of indeterminants
29
+ \\(x_1\\), \\(x_2\\), and \\(x_3\\), we have \\(\mathfrak{S}_{\alpha} = x_1 + x_2\\)
30
+ and \\(\mathfrak{S}_{\beta} = x_1\\). Multiplying these together we get
31
+ \\(\mathfrak{S}_{\alpha}\mathfrak{S}_{\beta} = x_1^2 + x_1x_2\\). As
32
+ \\(\mathfrak{S}_{2 3 1} = x_1x_2\\) and \\(\mathfrak{S}_{3 1 2} = x_1^2\\) we can write
33
+ \\(\mathfrak{S}_{\alpha}\mathfrak{S}_{\beta} = \mathfrak{S}_{2 3 1} + \mathfrak{S}_{3 1 2}\\).
34
+ It follows that \\(c_{\alpha,\beta}^{\gamma} = 1\\) if \\(\gamma = 2 3 1\\) or \\(\gamma = 3 1 2\\)
35
+ and otherwise \\(c_{\alpha,\beta}^{\gamma} = 0\\).
36
+
37
+ ## Dataset
38
+ Each instance in this dataset is a triple of permutations \\((\alpha,\beta,\gamma)\\),
39
+ labeled by its coefficient \\(c^{\gamma}_{\alpha \beta}\\) in the expansion of the product
40
+ \\(\mathfrak{S}_{\alpha} \mathfrak{S}_{\beta}\\). We call permutations \\(\alpha\\) and \\(\beta\\)
41
+ *lower index permutations 1* and *2* respectively. We call \\(\gamma\\) the *upper index
42
+ permutation*. The datasets are organized so that
43
+ \\(\alpha\\) and \\(\beta\\) are always drawn from the symmetric group on \\(n\\) elements
44
+ (we provide datasets for \\(n = 3\\), \\(4\\), and \\(5\\)), but \\(\gamma\\) may belong to a
45
+ strictly larger symmetric group. Not all possible triples of permutations are included
46
+ since the vast majority of these would be zero. The dataset consists of an approximately
47
+ equal number of zero and nonzero coefficients (but they are not balanced between quantities
48
+ of non-zero coefficients).
49
+
50
+ **Statistics**
51
+ All structure constants in this case are either 0, 1, 2, 3, 4, or 5.
52
+ | | 0 | 1 | 2 | 3 | 4 | 5 | Total number of instances |
53
+ |----------|----------|----------|----------|----------|----------|----------|----------|
54
+ | Train | 4,202,040 | 4,093,033 | 109,217 | 2,262 | 9 | 9 | 8,406,564 |
55
+ | Test | 1,052,062 | 1,021,898 | 27,110 | 568 | 3 | 0 | 2,101,641 |
56
+
57
+ ## Data generation
58
+ The Sage notebook within this directory gives the code used to generate these datasets.
59
+ The process involves:
60
+ - For a chosen \\(n\\), compute the products \\(\mathfrak{S}_{\alpha} \mathfrak{S}_{\beta}\\) for \\(\alpha,\beta \in S_n\\).
61
+ - For each of these pairs, extract and add to the dataset all non-zero structure constants \\(c^{\gamma_1}_{\alpha,\beta}, \dots, c^{\gamma_k}_{\alpha,\beta}\\)
62
+ - Furthermore, for each \\(c^{\gamma_i}_{\alpha,\beta} \neq 0\\), randomly permute \\(\gamma_i \mapsto \gamma_i'\\) to find \\(c^{\gamma_i'}_{\alpha,\beta} = 0\\) and \\(c^{\gamma_i'}_{\alpha,\beta}\\) is not already in the dataset.
63
+
64
+ ## Task
65
+
66
+ **Math question:** Find a combinatorial interpretation of the structure constants \\(c_{\alpha,\beta}^\gamma\\)
67
+ based on properties of \\(\alpha\\), \\(\beta\\), and \\(\gamma\\).
68
+ **Narrow ML task:** Train a model that, given three permutations \\(\alpha, \beta, \gamma\\), can
69
+ predict the associated structure constant \\(c^{\gamma}_{\alpha,\beta}\\).
70
+
71
+ ## Small model performance
72
+
73
+ | Size | Logistic regression | MLP | Transformer | Guessing majority class |
74
+ |----------|----------|-----------|------------|------------|
75
+ | \\(n= 4\\) | \\(88.8\%\\) | \\(93.1\% \pm 2.6\%\\) | \\(94.6\% \pm 1.0\%\\) | \\(52.3\%\\) |
76
+ | \\(n= 5\\) | \\(90.6\%\\) | \\(97.5\% \pm 0.2\%\\) | \\(96.2\% \pm 1.1\%\\) | \\(49.9\%\\) |
77
+ | \\(n= 6\\) | \\(89.7\%\\) | \\(99.8\% \pm 0.0\%\\) | \\(91.3\% \pm 8.0\%\\) | \\(50.1\%\\) |
78
+
79
+ The \\(\pm\\) signs indicate 95% confidence intervals from random weight initialization and training.
80
+
81
+ - **Curated by:** Henry Kvinge
82
+ - **Funded by:** Pacific Northwest National Laboratory
83
+ - **Language(s) (NLP):** NA
84
+ - **License:** CC-by-2.0
85
+
86
+ ### Dataset Sources
87
+
88
+ Data generation scripts can be found [here](https://github.com/pnnl/ML4AlgComb/tree/master/schubert_polynomial_structure).
89
+
90
+ - **Repository:** [ACD Repo](https://github.com/pnnl/ML4AlgComb/tree/master)
91
+
92
+ ## Citation
93
+
94
+ **BibTeX:**
95
+
96
+
97
+ @article{chau2025machine,
98
+ title={Machine learning meets algebraic combinatorics: A suite of datasets capturing research-level conjecturing ability in pure mathematics},
99
+ author={Chau, Herman and Jenne, Helen and Brown, Davis and He, Jesse and Raugas, Mark and Billey, Sara and Kvinge, Henry},
100
+ journal={arXiv preprint arXiv:2503.06366},
101
+ year={2025}
102
+ }
103
+ **APA:**
104
+
105
+ Chau, H., Jenne, H., Brown, D., He, J., Raugas, M., Billey, S., & Kvinge, H. (2025). Machine learning meets algebraic combinatorics: A suite of datasets capturing research-level conjecturing ability in pure mathematics. arXiv preprint arXiv:2503.06366.
106
+
107
+ ## Dataset Card Contact
108
+
109
+ Henry Kvinge, acdbenchdataset@gmail.com
110
+
111
+ ## References
112
+
113
+ \[1\] Bernstein, IMGI N., Israel M. Gel'fand, and Sergei I. Gel'fand. "Schubert cells and cohomology of the spaces G/P." Russian Mathematical Surveys 28.3 (1973): 1.
114
+ \[2\] Demazure, Michel. "Désingularisation des variétés de Schubert généralisées." Annales scientifiques de l'École Normale Supérieure. Vol. 7. No. 1. 1974.
115
+ \[3\] Lascoux, Alain, and Marcel-Paul Schützenberger. "Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux." CR Acad. Sci. Paris Sér. I Math 295.11 (1982): 629-633.
116
+ \[4\] Billey, Sara C., William Jockusch, and Richard P. Stanley. "Some combinatorial properties of Schubert polynomials." Journal of Algebraic Combinatorics 2.4 (1993): 345-374.
117
+ \[5\] Bergeron, Nantel, and Sara Billey. "RC-graphs and Schubert polynomials." Experimental Mathematics 2.4 (1993): 257-269.