Datasets:
Update README with complete group inventory (94 groups: 58 TC^0, 36 NC^1)
Browse files
README.md
CHANGED
|
@@ -606,13 +606,13 @@ Recent theoretical work demonstrates that TC⁰ models, including Transformers a
|
|
| 606 |
The dataset is organized in three complementary ways to support different research approaches:
|
| 607 |
|
| 608 |
### 1. Flat Organization (data/)
|
| 609 |
-
All
|
| 610 |
|
| 611 |
### 2. TC⁰ Complexity Class (TC0/)
|
| 612 |
-
Contains
|
| 613 |
|
| 614 |
### 3. NC¹ Complexity Class (NC1/)
|
| 615 |
-
Contains
|
| 616 |
|
| 617 |
## Usage
|
| 618 |
|
|
@@ -621,11 +621,13 @@ Contains 14 non-solvable groups requiring logarithmic-depth circuits for computa
|
|
| 621 |
```python
|
| 622 |
from datasets import load_dataset
|
| 623 |
|
| 624 |
-
# Load specific group datasets
|
| 625 |
-
s5_data = load_dataset("BeeGass/Group-Theory-Collection",
|
| 626 |
-
a4_data = load_dataset("BeeGass/Group-Theory-Collection",
|
|
|
|
| 627 |
|
| 628 |
-
# Load from
|
|
|
|
| 629 |
tc0_cyclic = load_dataset("BeeGass/Group-Theory-Collection", data_dir="TC0/c10")
|
| 630 |
nc1_symmetric = load_dataset("BeeGass/Group-Theory-Collection", data_dir="NC1/s7")
|
| 631 |
|
|
@@ -640,34 +642,40 @@ Each example contains the following fields:
|
|
| 640 |
|
| 641 |
```python
|
| 642 |
{
|
| 643 |
-
'input_sequence': "123 456 789",
|
| 644 |
-
'target': "234",
|
| 645 |
-
'sequence_length':
|
| 646 |
-
'group_degree': 7,
|
| 647 |
-
'group_order': 5040,
|
| 648 |
-
'group_type': "symmetric"
|
| 649 |
}
|
| 650 |
```
|
| 651 |
|
| 652 |
-
Note:
|
| 653 |
|
| 654 |
-
###
|
| 655 |
|
| 656 |
-
|
| 657 |
|
| 658 |
```python
|
| 659 |
# Load full dataset
|
| 660 |
-
dataset = load_dataset("BeeGass/Group-Theory-Collection",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 661 |
|
| 662 |
-
#
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
length_16_only = dataset.filter(lambda x: x['sequence_length'] == 16)
|
| 666 |
```
|
| 667 |
|
| 668 |
## Group Inventory
|
| 669 |
|
| 670 |
-
### TC⁰ Groups (Solvable) -
|
| 671 |
|
| 672 |
| Group Family | Groups | Orders | Mathematical Properties |
|
| 673 |
|--------------|--------|--------|------------------------|
|
|
@@ -675,19 +683,19 @@ length_16_only = dataset.filter(lambda x: x['sequence_length'] == 16)
|
|
| 675 |
| Alternating | A3, A4 | 3, 12 | Solvable for n ≤ 4 |
|
| 676 |
| Cyclic | C2-C30 (all) | 2-30 | Abelian groups |
|
| 677 |
| Dihedral | D3-D20 (all) | 6-40 | Symmetries of regular polygons |
|
| 678 |
-
| Klein | V4 | 4 | Smallest non-cyclic abelian group |
|
| 679 |
| Quaternion | Q8, Q16, Q32 | 8, 16, 32 | Non-abelian 2-groups |
|
| 680 |
| Elementary Abelian | Z2^[1-5], Z3^[1-4], Z5^[1-4] | Various | Direct products of cyclic groups |
|
| 681 |
| Frobenius | F20, F21 | 20, 21 | Transitive permutation groups |
|
| 682 |
-
| Projective Special Linear | PSL(2,2), PSL(2,3)
|
| 683 |
|
| 684 |
-
### NC¹ Groups (Non-Solvable) -
|
| 685 |
|
| 686 |
| Group Family | Groups | Orders | Mathematical Properties |
|
| 687 |
|--------------|--------|--------|------------------------|
|
| 688 |
| Symmetric | S5, S6, S7, S8, S9 | 120-362,880 | Non-solvable for n ≥ 5 |
|
| 689 |
| Alternating | A5, A6, A7, A8, A9 | 60-181,440 | Simple groups for n ≥ 5 |
|
| 690 |
-
| Projective Special Linear | PSL(2,5), PSL(2,7), PSL(2,11), PSL(3,2), PSL(3,3), PSL(3,5) | Various | Simple groups |
|
| 691 |
| Mathieu | M11, M12 | 7,920, 95,040 | Sporadic simple groups |
|
| 692 |
|
| 693 |
## Technical Specifications
|
|
|
|
| 606 |
The dataset is organized in three complementary ways to support different research approaches:
|
| 607 |
|
| 608 |
### 1. Flat Organization (data/)
|
| 609 |
+
All 94 individual group datasets are available for direct access in a flat structure, facilitating straightforward loading and comparison across groups.
|
| 610 |
|
| 611 |
### 2. TC⁰ Complexity Class (TC0/)
|
| 612 |
+
Contains 58 solvable groups that can theoretically be computed by constant-depth threshold circuits. These groups serve as positive controls where current neural architectures should succeed.
|
| 613 |
|
| 614 |
### 3. NC¹ Complexity Class (NC1/)
|
| 615 |
+
Contains 36 non-solvable groups requiring logarithmic-depth circuits for computation. These groups represent problems that are provably beyond the computational capacity of TC⁰ models.
|
| 616 |
|
| 617 |
## Usage
|
| 618 |
|
|
|
|
| 621 |
```python
|
| 622 |
from datasets import load_dataset
|
| 623 |
|
| 624 |
+
# Load specific group datasets using config names
|
| 625 |
+
s5_data = load_dataset("BeeGass/Group-Theory-Collection", name="s5")
|
| 626 |
+
a4_data = load_dataset("BeeGass/Group-Theory-Collection", name="a4")
|
| 627 |
+
m11_data = load_dataset("BeeGass/Group-Theory-Collection", name="m11")
|
| 628 |
|
| 629 |
+
# Alternative: Load from data directories
|
| 630 |
+
s5_data = load_dataset("BeeGass/Group-Theory-Collection", data_dir="data/s5")
|
| 631 |
tc0_cyclic = load_dataset("BeeGass/Group-Theory-Collection", data_dir="TC0/c10")
|
| 632 |
nc1_symmetric = load_dataset("BeeGass/Group-Theory-Collection", data_dir="NC1/s7")
|
| 633 |
|
|
|
|
| 642 |
|
| 643 |
```python
|
| 644 |
{
|
| 645 |
+
'input_sequence': "123 456 789 ... (1024 IDs)", # Space-separated permutation IDs (fixed length 1024)
|
| 646 |
+
'target': "234", # Result of composition as string
|
| 647 |
+
'sequence_length': 1024, # Always 1024 (fixed length sequences)
|
| 648 |
+
'group_degree': 7, # Degree of the permutation group (e.g., S7 acts on 7 elements)
|
| 649 |
+
'group_order': 5040, # Order (size) of the group (e.g., |S7| = 7!)
|
| 650 |
+
'group_type': "symmetric" # Type of the group
|
| 651 |
}
|
| 652 |
```
|
| 653 |
|
| 654 |
+
Note: All sequences contain exactly 1024 permutation IDs. The provided target is the composition of all 1024 permutations. Researchers who need shorter sequences can take a subset of the permutation IDs and recompute the composition target for that subset.
|
| 655 |
|
| 656 |
+
### Working with Different Sequence Lengths
|
| 657 |
|
| 658 |
+
To work with sequences shorter than 1024, take a subset of permutation IDs and compute their composition:
|
| 659 |
|
| 660 |
```python
|
| 661 |
# Load full dataset
|
| 662 |
+
dataset = load_dataset("BeeGass/Group-Theory-Collection", name="s5")
|
| 663 |
+
|
| 664 |
+
# Example: Work with sequences of length 32
|
| 665 |
+
example = dataset['train'][0]
|
| 666 |
+
all_ids = example['input_sequence'].split() # All 1024 permutation IDs
|
| 667 |
+
|
| 668 |
+
# Take first 32 permutation IDs
|
| 669 |
+
subset_ids = all_ids[:32]
|
| 670 |
|
| 671 |
+
# You would need to recompute the target for this subset
|
| 672 |
+
# The new target would be the composition of these 32 permutations
|
| 673 |
+
# (Implementation depends on your permutation representation)
|
|
|
|
| 674 |
```
|
| 675 |
|
| 676 |
## Group Inventory
|
| 677 |
|
| 678 |
+
### TC⁰ Groups (Solvable) - 58 Groups
|
| 679 |
|
| 680 |
| Group Family | Groups | Orders | Mathematical Properties |
|
| 681 |
|--------------|--------|--------|------------------------|
|
|
|
|
| 683 |
| Alternating | A3, A4 | 3, 12 | Solvable for n ≤ 4 |
|
| 684 |
| Cyclic | C2-C30 (all) | 2-30 | Abelian groups |
|
| 685 |
| Dihedral | D3-D20 (all) | 6-40 | Symmetries of regular polygons |
|
| 686 |
+
| Klein | V4 | 4 | Smallest non-cyclic abelian group (isomorphic to Z₂²) |
|
| 687 |
| Quaternion | Q8, Q16, Q32 | 8, 16, 32 | Non-abelian 2-groups |
|
| 688 |
| Elementary Abelian | Z2^[1-5], Z3^[1-4], Z5^[1-4] | Various | Direct products of cyclic groups |
|
| 689 |
| Frobenius | F20, F21 | 20, 21 | Transitive permutation groups |
|
| 690 |
+
| Projective Special Linear | PSL(2,2), PSL(2,3) | 6, 12 | Solvable PSL groups |
|
| 691 |
|
| 692 |
+
### NC¹ Groups (Non-Solvable) - 36 Groups
|
| 693 |
|
| 694 |
| Group Family | Groups | Orders | Mathematical Properties |
|
| 695 |
|--------------|--------|--------|------------------------|
|
| 696 |
| Symmetric | S5, S6, S7, S8, S9 | 120-362,880 | Non-solvable for n ≥ 5 |
|
| 697 |
| Alternating | A5, A6, A7, A8, A9 | 60-181,440 | Simple groups for n ≥ 5 |
|
| 698 |
+
| Projective Special Linear | PSL(2,4), PSL(2,5), PSL(2,7), PSL(2,8), PSL(2,9), PSL(2,11), PSL(3,2), PSL(3,3), PSL(3,4), PSL(3,5) | Various | Simple groups (PSL(2,4) ≅ A5) |
|
| 699 |
| Mathieu | M11, M12 | 7,920, 95,040 | Sporadic simple groups |
|
| 700 |
|
| 701 |
## Technical Specifications
|