BeeGass commited on
Commit
84d5a18
·
verified ·
1 Parent(s): ee3698e

Update README with complete group inventory (94 groups: 58 TC^0, 36 NC^1)

Browse files
Files changed (1) hide show
  1. README.md +34 -26
README.md CHANGED
@@ -606,13 +606,13 @@ Recent theoretical work demonstrates that TC⁰ models, including Transformers a
606
  The dataset is organized in three complementary ways to support different research approaches:
607
 
608
  ### 1. Flat Organization (data/)
609
- All 59 individual group datasets are available for direct access in a flat structure, facilitating straightforward loading and comparison across groups.
610
 
611
  ### 2. TC⁰ Complexity Class (TC0/)
612
- Contains 43 solvable groups that can theoretically be computed by constant-depth threshold circuits. These groups serve as positive controls where current neural architectures should succeed.
613
 
614
  ### 3. NC¹ Complexity Class (NC1/)
615
- Contains 14 non-solvable groups requiring logarithmic-depth circuits for computation. These groups represent problems that are provably beyond the computational capacity of TC⁰ models.
616
 
617
  ## Usage
618
 
@@ -621,11 +621,13 @@ Contains 14 non-solvable groups requiring logarithmic-depth circuits for computa
621
  ```python
622
  from datasets import load_dataset
623
 
624
- # Load specific group datasets
625
- s5_data = load_dataset("BeeGass/Group-Theory-Collection", data_dir="data/s5")
626
- a4_data = load_dataset("BeeGass/Group-Theory-Collection", data_dir="data/a4")
 
627
 
628
- # Load from complexity-organized directories
 
629
  tc0_cyclic = load_dataset("BeeGass/Group-Theory-Collection", data_dir="TC0/c10")
630
  nc1_symmetric = load_dataset("BeeGass/Group-Theory-Collection", data_dir="NC1/s7")
631
 
@@ -640,34 +642,40 @@ Each example contains the following fields:
640
 
641
  ```python
642
  {
643
- 'input_sequence': "123 456 789", # Space-separated permutation IDs to compose
644
- 'target': "234", # Result of composition as string
645
- 'sequence_length': 3, # Number of permutations in this sequence
646
- 'group_degree': 7, # Degree of the permutation group (e.g., S7 acts on 7 elements)
647
- 'group_order': 5040, # Order (size) of the group (e.g., |S7| = 7!)
648
- 'group_type': "symmetric" # Type of the group
649
  }
650
  ```
651
 
652
- Note: Each dataset contains sequences of varying lengths. The 'sequence_length' field indicates how many permutations are in that particular example's input sequence (ranging from 3 to 1024).
653
 
654
- ### Filtering by Sequence Length
655
 
656
- Since each dataset contains sequences of all lengths from 3 to 1024, researchers often need to filter for specific length ranges:
657
 
658
  ```python
659
  # Load full dataset
660
- dataset = load_dataset("BeeGass/Group-Theory-Collection", data_dir="data/s5")
 
 
 
 
 
 
 
661
 
662
- # Filter for sequences of specific lengths
663
- short_sequences = dataset.filter(lambda x: x['sequence_length'] <= 32)
664
- medium_sequences = dataset.filter(lambda x: 32 < x['sequence_length'] <= 128)
665
- length_16_only = dataset.filter(lambda x: x['sequence_length'] == 16)
666
  ```
667
 
668
  ## Group Inventory
669
 
670
- ### TC⁰ Groups (Solvable) - 75 Groups
671
 
672
  | Group Family | Groups | Orders | Mathematical Properties |
673
  |--------------|--------|--------|------------------------|
@@ -675,19 +683,19 @@ length_16_only = dataset.filter(lambda x: x['sequence_length'] == 16)
675
  | Alternating | A3, A4 | 3, 12 | Solvable for n ≤ 4 |
676
  | Cyclic | C2-C30 (all) | 2-30 | Abelian groups |
677
  | Dihedral | D3-D20 (all) | 6-40 | Symmetries of regular polygons |
678
- | Klein | V4 | 4 | Smallest non-cyclic abelian group |
679
  | Quaternion | Q8, Q16, Q32 | 8, 16, 32 | Non-abelian 2-groups |
680
  | Elementary Abelian | Z2^[1-5], Z3^[1-4], Z5^[1-4] | Various | Direct products of cyclic groups |
681
  | Frobenius | F20, F21 | 20, 21 | Transitive permutation groups |
682
- | Projective Special Linear | PSL(2,2), PSL(2,3), PSL(2,4), PSL(2,8), PSL(2,9), PSL(3,4) | Various | Some solvable PSL groups |
683
 
684
- ### NC¹ Groups (Non-Solvable) - 19 Groups
685
 
686
  | Group Family | Groups | Orders | Mathematical Properties |
687
  |--------------|--------|--------|------------------------|
688
  | Symmetric | S5, S6, S7, S8, S9 | 120-362,880 | Non-solvable for n ≥ 5 |
689
  | Alternating | A5, A6, A7, A8, A9 | 60-181,440 | Simple groups for n ≥ 5 |
690
- | Projective Special Linear | PSL(2,5), PSL(2,7), PSL(2,11), PSL(3,2), PSL(3,3), PSL(3,5) | Various | Simple groups |
691
  | Mathieu | M11, M12 | 7,920, 95,040 | Sporadic simple groups |
692
 
693
  ## Technical Specifications
 
606
  The dataset is organized in three complementary ways to support different research approaches:
607
 
608
  ### 1. Flat Organization (data/)
609
+ All 94 individual group datasets are available for direct access in a flat structure, facilitating straightforward loading and comparison across groups.
610
 
611
  ### 2. TC⁰ Complexity Class (TC0/)
612
+ Contains 58 solvable groups that can theoretically be computed by constant-depth threshold circuits. These groups serve as positive controls where current neural architectures should succeed.
613
 
614
  ### 3. NC¹ Complexity Class (NC1/)
615
+ Contains 36 non-solvable groups requiring logarithmic-depth circuits for computation. These groups represent problems that are provably beyond the computational capacity of TC⁰ models.
616
 
617
  ## Usage
618
 
 
621
  ```python
622
  from datasets import load_dataset
623
 
624
+ # Load specific group datasets using config names
625
+ s5_data = load_dataset("BeeGass/Group-Theory-Collection", name="s5")
626
+ a4_data = load_dataset("BeeGass/Group-Theory-Collection", name="a4")
627
+ m11_data = load_dataset("BeeGass/Group-Theory-Collection", name="m11")
628
 
629
+ # Alternative: Load from data directories
630
+ s5_data = load_dataset("BeeGass/Group-Theory-Collection", data_dir="data/s5")
631
  tc0_cyclic = load_dataset("BeeGass/Group-Theory-Collection", data_dir="TC0/c10")
632
  nc1_symmetric = load_dataset("BeeGass/Group-Theory-Collection", data_dir="NC1/s7")
633
 
 
642
 
643
  ```python
644
  {
645
+ 'input_sequence': "123 456 789 ... (1024 IDs)", # Space-separated permutation IDs (fixed length 1024)
646
+ 'target': "234", # Result of composition as string
647
+ 'sequence_length': 1024, # Always 1024 (fixed length sequences)
648
+ 'group_degree': 7, # Degree of the permutation group (e.g., S7 acts on 7 elements)
649
+ 'group_order': 5040, # Order (size) of the group (e.g., |S7| = 7!)
650
+ 'group_type': "symmetric" # Type of the group
651
  }
652
  ```
653
 
654
+ Note: All sequences contain exactly 1024 permutation IDs. The provided target is the composition of all 1024 permutations. Researchers who need shorter sequences can take a subset of the permutation IDs and recompute the composition target for that subset.
655
 
656
+ ### Working with Different Sequence Lengths
657
 
658
+ To work with sequences shorter than 1024, take a subset of permutation IDs and compute their composition:
659
 
660
  ```python
661
  # Load full dataset
662
+ dataset = load_dataset("BeeGass/Group-Theory-Collection", name="s5")
663
+
664
+ # Example: Work with sequences of length 32
665
+ example = dataset['train'][0]
666
+ all_ids = example['input_sequence'].split() # All 1024 permutation IDs
667
+
668
+ # Take first 32 permutation IDs
669
+ subset_ids = all_ids[:32]
670
 
671
+ # You would need to recompute the target for this subset
672
+ # The new target would be the composition of these 32 permutations
673
+ # (Implementation depends on your permutation representation)
 
674
  ```
675
 
676
  ## Group Inventory
677
 
678
+ ### TC⁰ Groups (Solvable) - 58 Groups
679
 
680
  | Group Family | Groups | Orders | Mathematical Properties |
681
  |--------------|--------|--------|------------------------|
 
683
  | Alternating | A3, A4 | 3, 12 | Solvable for n ≤ 4 |
684
  | Cyclic | C2-C30 (all) | 2-30 | Abelian groups |
685
  | Dihedral | D3-D20 (all) | 6-40 | Symmetries of regular polygons |
686
+ | Klein | V4 | 4 | Smallest non-cyclic abelian group (isomorphic to Z₂²) |
687
  | Quaternion | Q8, Q16, Q32 | 8, 16, 32 | Non-abelian 2-groups |
688
  | Elementary Abelian | Z2^[1-5], Z3^[1-4], Z5^[1-4] | Various | Direct products of cyclic groups |
689
  | Frobenius | F20, F21 | 20, 21 | Transitive permutation groups |
690
+ | Projective Special Linear | PSL(2,2), PSL(2,3) | 6, 12 | Solvable PSL groups |
691
 
692
+ ### NC¹ Groups (Non-Solvable) - 36 Groups
693
 
694
  | Group Family | Groups | Orders | Mathematical Properties |
695
  |--------------|--------|--------|------------------------|
696
  | Symmetric | S5, S6, S7, S8, S9 | 120-362,880 | Non-solvable for n ≥ 5 |
697
  | Alternating | A5, A6, A7, A8, A9 | 60-181,440 | Simple groups for n ≥ 5 |
698
+ | Projective Special Linear | PSL(2,4), PSL(2,5), PSL(2,7), PSL(2,8), PSL(2,9), PSL(2,11), PSL(3,2), PSL(3,3), PSL(3,4), PSL(3,5) | Various | Simple groups (PSL(2,4) ≅ A5) |
699
  | Mathieu | M11, M12 | 7,920, 95,040 | Sporadic simple groups |
700
 
701
  ## Technical Specifications