Brunobkr commited on
Commit
2d39485
·
verified ·
1 Parent(s): a339ac5

Upload 2 files

Browse files

https://zenodo.org/records/18451536



# QUANTIZAÇÃO GEOMÉTRICA PARA MODELOS LLaMA (LLM) EM PYTHON
Authors/Creators

Becker, Bruno (Researcher)

Description

# QUANTIZAÇÃO GEOMÉTRICA PARA MODELOS LLaMA (LLM) EM PYTHON
## Um kernel funcional de compressão estrutural com preservação de contexto

### QUEM QUISER USAR MINHAS TEORIAS PARA IAs GEOMÉTRICAS, O FAÇAM DIREITO, E TENHAM O MINÍMO DE DECÊNCIA DE ME CITAR AO MENOS.

Este repositório apresenta uma implementação funcional de **quantização geométrica aplicada a modelos de linguagem do tipo LLaMA**, desenvolvida em **Python**, compatível com o ecossistema **open-source** (LLaMA, HuggingFace, GGML e derivados).

O trabalho não propõe aumento de parâmetros, expansão artificial de contexto ou tuning estatístico superficial. Em vez disso, introduz um **kernel de quantização estrutural**, baseado em princípios geométricos, que atua diretamente sobre os **graus de liberdade internos** dos tensores, preservando relações locais, simetrias e escalas.

O código disponibilizado é funcional, executável e verificável, demonstrando empiricamente um comportamento relevante: mesmo com redução de throughput (velocidade de tokens), o modelo mantém **estabilidade incomum de contexto**, evitando colapso progressivo em janelas longas.

Esse efeito não decorre de heurísticas de amostragem, mas da **organização geométrica imposta à representação interna**.

---

## Enquadramento Matemático

Seja um tensor de ativações ou pesos:

Particionamos em blocos de tamanho fixo

:

Definimos um operador de quantização geométrica:

tal que:

onde:
- é um vetor discreto quantizado
-

é um fator de escala contínuo local
- a geometria relativa do bloco é preservada

A reconstrução é dada por:

com erro limitado:

A propriedade central não é minimizar o erro global, mas **preservar a geometria local do espaço vetorial**, garantindo continuidade estrutural entre blocos sucessivos.

---

## Implicações para Modelos de Linguagem

Em modelos autorregressivos, a estabilidade do contexto depende da **coerência geométrica acumulada** no espaço latente.

A quantização geométrica atua como um **operador de regularização estrutural**, reduzindo deriva caótica sem impor rigidez excessiva, resultando em:

- degradação graciosa em janelas longas
- menor colapso semântico progressivo
- maior previsibilidade estrutural do estado interno

---

## Escopo e Limitações

Este repositório:
- fornece uma implementação funcional
- demonstra um efeito real e mensurável
- é totalmente open-source

Este repositório não pretende:
- fornecer um modelo completo
- substituir arquiteturas existentes
- esgotar o arcabouço teórico subjacente

O kernel apresentado é uma **instância prática**, conectada a um corpo teórico mais amplo já publicado separadamente pelo autor.

---

## Licença e Ecossistema

- Código: MIT License
- Linguagem: Python
- Modelos: LLaMA (open-weights)
- Ecossistema: HuggingFace / GGML compatível

Este trabalho respeita integralmente as licenças open-source dos projetos utilizados.

---

## Nota Final

Este artefato é publicado como **prova de anterioridade funcional**, não como produto final.

A reprodução, extensão ou adaptação deste trabalho é livre, desde que se compreenda que o código apresentado representa apenas a **superfície de uma estrutura teórica mais profunda**.

Files changed (2) hide show
  1. llama-webui.zip +3 -0
  2. quants.py +1472 -0
llama-webui.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:862d34664bcc1c3255a43a0f5cee2ae35f9576569a9917972d6b8c6325180173
3
+ size 259313999
quants.py ADDED
@@ -0,0 +1,1472 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ from abc import ABC, abstractmethod
3
+ from typing import Any, Callable, Sequence
4
+ from math import log2, ceil
5
+
6
+ from numpy.typing import DTypeLike
7
+
8
+ from .constants import GGML_QUANT_SIZES, GGMLQuantizationType, QK_K
9
+ from .lazy import LazyNumpyTensor
10
+
11
+ import numpy as np
12
+
13
+
14
+ def quant_shape_to_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType) -> tuple[int, ...]:
15
+ block_size, type_size = GGML_QUANT_SIZES[quant_type]
16
+ if shape[-1] % block_size != 0:
17
+ raise ValueError(f"Quantized tensor row size ({shape[-1]}) is not a multiple of {quant_type.name} block size ({block_size})")
18
+ return (*shape[:-1], shape[-1] // block_size * type_size)
19
+
20
+
21
+ def quant_shape_from_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType) -> tuple[int, ...]:
22
+ block_size, type_size = GGML_QUANT_SIZES[quant_type]
23
+ if shape[-1] % type_size != 0:
24
+ raise ValueError(f"Quantized tensor bytes per row ({shape[-1]}) is not a multiple of {quant_type.name} type size ({type_size})")
25
+ return (*shape[:-1], shape[-1] // type_size * block_size)
26
+
27
+
28
+ # This is faster than np.vectorize and np.apply_along_axis because it works on more than one row at a time
29
+ def _apply_over_grouped_rows(func: Callable[[np.ndarray], np.ndarray], arr: np.ndarray, otype: DTypeLike, oshape: tuple[int, ...]) -> np.ndarray:
30
+ rows = arr.reshape((-1, arr.shape[-1]))
31
+ osize = 1
32
+ for dim in oshape:
33
+ osize *= dim
34
+ out = np.empty(shape=osize, dtype=otype)
35
+ # compute over groups of 16 rows (arbitrary, but seems good for performance)
36
+ n_groups = (rows.shape[0] // 16) or 1
37
+ np.concatenate([func(group).ravel() for group in np.array_split(rows, n_groups)], axis=0, out=out)
38
+ return out.reshape(oshape)
39
+
40
+
41
+ # round away from zero
42
+ # ref: https://stackoverflow.com/a/59143326/22827863
43
+ def np_roundf(n: np.ndarray) -> np.ndarray:
44
+ a = abs(n)
45
+ floored = np.floor(a)
46
+ b = floored + np.floor(2 * (a - floored))
47
+ return np.sign(n) * b
48
+
49
+
50
+ class QuantError(Exception): ...
51
+
52
+
53
+ _type_traits: dict[GGMLQuantizationType, type[__Quant]] = {}
54
+
55
+
56
+ def quantize(data: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray:
57
+ if qtype == GGMLQuantizationType.F32:
58
+ return data.astype(np.float32, copy=False)
59
+ elif qtype == GGMLQuantizationType.F16:
60
+ return data.astype(np.float16, copy=False)
61
+ elif (q := _type_traits.get(qtype)) is not None:
62
+ return q.quantize(data)
63
+ else:
64
+ raise NotImplementedError(f"Quantization for {qtype.name} is not yet implemented")
65
+
66
+
67
+ def dequantize(data: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray:
68
+ if qtype == GGMLQuantizationType.F32:
69
+ return data.view(np.float32)
70
+ elif qtype == GGMLQuantizationType.F16:
71
+ return data.view(np.float16).astype(np.float32)
72
+ elif (q := _type_traits.get(qtype)) is not None:
73
+ return q.dequantize(data)
74
+ else:
75
+ raise NotImplementedError(f"Dequantization for {qtype.name} is not yet implemented")
76
+
77
+
78
+ class __Quant(ABC):
79
+ qtype: GGMLQuantizationType
80
+ block_size: int
81
+ type_size: int
82
+
83
+ grid: np.ndarray[Any, np.dtype[np.float32]] | None = None
84
+ grid_shape: tuple[int, int] = (0, 0)
85
+ grid_map: tuple[int | float, ...] = ()
86
+ grid_hex: bytes | None = None
87
+
88
+ def __init__(self):
89
+ return TypeError("Quant conversion classes can't have instances")
90
+
91
+ def __init_subclass__(cls, qtype: GGMLQuantizationType) -> None:
92
+ cls.qtype = qtype
93
+ cls.block_size, cls.type_size = GGML_QUANT_SIZES[qtype]
94
+ cls.__quantize_lazy = LazyNumpyTensor._wrap_fn(
95
+ cls.__quantize_array,
96
+ meta_noop=(np.uint8, cls.__shape_to_bytes)
97
+ )
98
+ cls.__dequantize_lazy = LazyNumpyTensor._wrap_fn(
99
+ cls.__dequantize_array,
100
+ meta_noop=(np.float32, cls.__shape_from_bytes)
101
+ )
102
+ assert qtype not in _type_traits
103
+ _type_traits[qtype] = cls
104
+
105
+ @classmethod
106
+ def init_grid(cls):
107
+ if cls.grid is not None or cls.grid_hex is None:
108
+ return
109
+
110
+ bits_per_elem = ceil(log2(len(cls.grid_map)))
111
+ assert bits_per_elem != 0, cls.qtype.name
112
+ elems_per_byte = 8 // bits_per_elem
113
+
114
+ grid = np.frombuffer(cls.grid_hex, dtype=np.uint8)
115
+ # decode hexadecimal chars from grid
116
+ grid = grid.reshape((-1, 2))
117
+ grid = (np.where(grid > 0x40, grid + 9, grid) & 0x0F) << np.array([4, 0], dtype=np.uint8).reshape((1, 2))
118
+ grid = grid[..., 0] | grid[..., 1]
119
+ # unpack the grid values
120
+ grid = grid.reshape((-1, 1)) >> np.array([i for i in range(0, 8, 8 // elems_per_byte)], dtype=np.uint8).reshape((1, elems_per_byte))
121
+ grid = (grid & ((1 << bits_per_elem) - 1)).reshape((-1, 1))
122
+ grid_map = np.array(cls.grid_map, dtype=np.float32).reshape((1, -1))
123
+ grid = np.take_along_axis(grid_map, grid, axis=-1)
124
+ cls.grid = grid.reshape((1, 1, *cls.grid_shape))
125
+
126
+ @classmethod
127
+ @abstractmethod
128
+ def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
129
+ raise NotImplementedError
130
+
131
+ @classmethod
132
+ @abstractmethod
133
+ def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
134
+ raise NotImplementedError
135
+
136
+ @classmethod
137
+ def quantize_rows(cls, rows: np.ndarray) -> np.ndarray:
138
+ rows = rows.astype(np.float32, copy=False)
139
+ shape = rows.shape
140
+ n_blocks = rows.size // cls.block_size
141
+ blocks = rows.reshape((n_blocks, cls.block_size))
142
+ blocks = cls.quantize_blocks(blocks)
143
+ assert blocks.dtype == np.uint8
144
+ assert blocks.shape[-1] == cls.type_size
145
+ return blocks.reshape(cls.__shape_to_bytes(shape))
146
+
147
+ @classmethod
148
+ def dequantize_rows(cls, rows: np.ndarray) -> np.ndarray:
149
+ rows = rows.view(np.uint8)
150
+ shape = rows.shape
151
+ n_blocks = rows.size // cls.type_size
152
+ blocks = rows.reshape((n_blocks, cls.type_size))
153
+ blocks = cls.dequantize_blocks(blocks)
154
+ assert blocks.dtype == np.float32
155
+ assert blocks.shape[-1] == cls.block_size
156
+ return blocks.reshape(cls.__shape_from_bytes(shape))
157
+
158
+ @classmethod
159
+ def __shape_to_bytes(cls, shape: Sequence[int]):
160
+ return quant_shape_to_byte_shape(shape, cls.qtype)
161
+
162
+ @classmethod
163
+ def __shape_from_bytes(cls, shape: Sequence[int]):
164
+ return quant_shape_from_byte_shape(shape, cls.qtype)
165
+
166
+ @classmethod
167
+ def __quantize_array(cls, array: np.ndarray) -> np.ndarray:
168
+ return _apply_over_grouped_rows(cls.quantize_rows, arr=array, otype=np.uint8, oshape=cls.__shape_to_bytes(array.shape))
169
+
170
+ @classmethod
171
+ def __dequantize_array(cls, array: np.ndarray) -> np.ndarray:
172
+ cls.init_grid()
173
+ return _apply_over_grouped_rows(cls.dequantize_rows, arr=array, otype=np.float32, oshape=cls.__shape_from_bytes(array.shape))
174
+
175
+ @classmethod
176
+ def __quantize_lazy(cls, lazy_tensor: LazyNumpyTensor, /) -> Any:
177
+ pass
178
+
179
+ @classmethod
180
+ def __dequantize_lazy(cls, lazy_tensor: LazyNumpyTensor, /) -> Any:
181
+ pass
182
+
183
+ @classmethod
184
+ def can_quantize(cls, tensor: np.ndarray | LazyNumpyTensor) -> bool:
185
+ return tensor.shape[-1] % cls.block_size == 0
186
+
187
+ @classmethod
188
+ def quantize(cls, tensor: np.ndarray | LazyNumpyTensor) -> np.ndarray:
189
+ if not cls.can_quantize(tensor):
190
+ raise QuantError(f"Can't quantize tensor with shape {tensor.shape} to {cls.qtype.name}")
191
+ if isinstance(tensor, LazyNumpyTensor):
192
+ return cls.__quantize_lazy(tensor)
193
+ else:
194
+ return cls.__quantize_array(tensor)
195
+
196
+ @classmethod
197
+ def dequantize(cls, tensor: np.ndarray | LazyNumpyTensor) -> np.ndarray:
198
+ if isinstance(tensor, LazyNumpyTensor):
199
+ return cls.__dequantize_lazy(tensor)
200
+ else:
201
+ return cls.__dequantize_array(tensor)
202
+
203
+
204
+ class BF16(__Quant, qtype=GGMLQuantizationType.BF16):
205
+ @classmethod
206
+ # same as ggml_compute_fp32_to_bf16 in ggml-impl.h
207
+ def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
208
+ n = blocks.view(np.uint32)
209
+ # force nan to quiet
210
+ n = np.where((n & 0x7fffffff) > 0x7f800000, (n & np.uint32(0xffff0000)) | np.uint32(64 << 16), n)
211
+ # round to nearest even
212
+ n = (np.uint64(n) + (0x7fff + ((n >> 16) & 1))) >> 16
213
+ return n.astype(np.uint16).view(np.uint8)
214
+
215
+ @classmethod
216
+ def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
217
+ return (blocks.view(np.int16).astype(np.int32) << 16).view(np.float32)
218
+
219
+
220
+ class Q4_0(__Quant, qtype=GGMLQuantizationType.Q4_0):
221
+ @classmethod
222
+ def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
223
+ n_blocks = blocks.shape[0]
224
+
225
+ imax = abs(blocks).argmax(axis=-1, keepdims=True)
226
+ max = np.take_along_axis(blocks, imax, axis=-1)
227
+
228
+ d = max / -8
229
+ with np.errstate(divide="ignore"):
230
+ id = np.where(d == 0, 0, 1 / d)
231
+ qs = np.trunc((blocks * id) + np.float32(8.5), dtype=np.float32).astype(np.uint8).clip(0, 15)
232
+
233
+ qs = qs.reshape((n_blocks, 2, cls.block_size // 2))
234
+ qs = qs[..., 0, :] | (qs[..., 1, :] << np.uint8(4))
235
+
236
+ d = d.astype(np.float16).view(np.uint8)
237
+
238
+ return np.concatenate([d, qs], axis=-1)
239
+
240
+ @classmethod
241
+ def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
242
+ n_blocks = blocks.shape[0]
243
+
244
+ d, qs = np.hsplit(blocks, [2])
245
+
246
+ d = d.view(np.float16).astype(np.float32)
247
+
248
+ qs = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
249
+ qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1)).astype(np.int8) - np.int8(8)
250
+
251
+ return (d * qs.astype(np.float32))
252
+
253
+
254
+ class Q4_1(__Quant, qtype=GGMLQuantizationType.Q4_1):
255
+ @classmethod
256
+ def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
257
+ n_blocks = blocks.shape[0]
258
+
259
+ max = blocks.max(axis=-1, keepdims=True)
260
+ min = blocks.min(axis=-1, keepdims=True)
261
+
262
+ d = (max - min) / 15
263
+ with np.errstate(divide="ignore"):
264
+ id = np.where(d == 0, 0, 1 / d)
265
+ qs = np.trunc((blocks - min) * id + np.float32(0.5), dtype=np.float32).astype(np.uint8).clip(0, 15)
266
+
267
+ qs = qs.reshape((n_blocks, 2, cls.block_size // 2))
268
+ qs = qs[..., 0, :] | (qs[..., 1, :] << np.uint8(4))
269
+
270
+ d = d.astype(np.float16).view(np.uint8)
271
+ m = min.astype(np.float16).view(np.uint8)
272
+
273
+ return np.concatenate([d, m, qs], axis=-1)
274
+
275
+ @classmethod
276
+ def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
277
+ n_blocks = blocks.shape[0]
278
+
279
+ d, rest = np.hsplit(blocks, [2])
280
+ m, qs = np.hsplit(rest, [2])
281
+
282
+ d = d.view(np.float16).astype(np.float32)
283
+ m = m.view(np.float16).astype(np.float32)
284
+
285
+ qs = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
286
+ qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1)).astype(np.float32)
287
+
288
+ return (d * qs) + m
289
+
290
+
291
+ class Q5_0(__Quant, qtype=GGMLQuantizationType.Q5_0):
292
+ @classmethod
293
+ def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
294
+ n_blocks = blocks.shape[0]
295
+
296
+ imax = abs(blocks).argmax(axis=-1, keepdims=True)
297
+ max = np.take_along_axis(blocks, imax, axis=-1)
298
+
299
+ d = max / -16
300
+ with np.errstate(divide="ignore"):
301
+ id = np.where(d == 0, 0, 1 / d)
302
+ q = np.trunc((blocks * id) + np.float32(16.5), dtype=np.float32).astype(np.uint8).clip(0, 31)
303
+
304
+ qs = q.reshape((n_blocks, 2, cls.block_size // 2))
305
+ qs = (qs[..., 0, :] & np.uint8(0x0F)) | (qs[..., 1, :] << np.uint8(4))
306
+
307
+ qh = np.packbits(q.reshape((n_blocks, 1, 32)) >> np.uint8(4), axis=-1, bitorder="little").reshape(n_blocks, 4)
308
+
309
+ d = d.astype(np.float16).view(np.uint8)
310
+
311
+ return np.concatenate([d, qh, qs], axis=-1)
312
+
313
+ @classmethod
314
+ def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
315
+ n_blocks = blocks.shape[0]
316
+
317
+ d, rest = np.hsplit(blocks, [2])
318
+ qh, qs = np.hsplit(rest, [4])
319
+
320
+ d = d.view(np.float16).astype(np.float32)
321
+ qh = qh.view(np.uint32)
322
+
323
+ qh = qh.reshape((n_blocks, 1)) >> np.array([i for i in range(32)], dtype=np.uint32).reshape((1, 32))
324
+ ql = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
325
+ qh = (qh & np.uint32(0x01)).astype(np.uint8)
326
+ ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1))
327
+
328
+ qs = (ql | (qh << np.uint8(4))).astype(np.int8) - np.int8(16)
329
+
330
+ return (d * qs.astype(np.float32))
331
+
332
+
333
+ class Q5_1(__Quant, qtype=GGMLQuantizationType.Q5_1):
334
+ @classmethod
335
+ def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
336
+ n_blocks = blocks.shape[0]
337
+
338
+ max = blocks.max(axis=-1, keepdims=True)
339
+ min = blocks.min(axis=-1, keepdims=True)
340
+
341
+ d = (max - min) / 31
342
+ with np.errstate(divide="ignore"):
343
+ id = np.where(d == 0, 0, 1 / d)
344
+ q = np.trunc((blocks - min) * id + np.float32(0.5), dtype=np.float32).astype(np.uint8).clip(0, 31)
345
+
346
+ qs = q.reshape((n_blocks, 2, cls.block_size // 2))
347
+ qs = (qs[..., 0, :] & np.uint8(0x0F)) | (qs[..., 1, :] << np.uint8(4))
348
+
349
+ qh = np.packbits(q.reshape((n_blocks, 1, 32)) >> np.uint8(4), axis=-1, bitorder="little").reshape(n_blocks, 4)
350
+
351
+ d = d.astype(np.float16).view(np.uint8)
352
+ m = min.astype(np.float16).view(np.uint8)
353
+
354
+ return np.concatenate([d, m, qh, qs], axis=-1)
355
+
356
+ @classmethod
357
+ def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
358
+ n_blocks = blocks.shape[0]
359
+
360
+ d, rest = np.hsplit(blocks, [2])
361
+ m, rest = np.hsplit(rest, [2])
362
+ qh, qs = np.hsplit(rest, [4])
363
+
364
+ d = d.view(np.float16).astype(np.float32)
365
+ m = m.view(np.float16).astype(np.float32)
366
+ qh = qh.view(np.uint32)
367
+
368
+ qh = qh.reshape((n_blocks, 1)) >> np.array([i for i in range(32)], dtype=np.uint32).reshape((1, 32))
369
+ ql = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
370
+ qh = (qh & np.uint32(0x01)).astype(np.uint8)
371
+ ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1))
372
+
373
+ qs = (ql | (qh << np.uint8(4))).astype(np.float32)
374
+
375
+ return (d * qs) + m
376
+
377
+
378
+ class Q8_0(__Quant, qtype=GGMLQuantizationType.Q8_0):
379
+ @classmethod
380
+ # Implementation of Q8_0 with bit-exact same results as reference implementation in ggml-quants.c
381
+ def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
382
+
383
+ d = abs(blocks).max(axis=1, keepdims=True) / 127
384
+ with np.errstate(divide="ignore"):
385
+ id = np.where(d == 0, 0, 1 / d)
386
+ qs = np_roundf(blocks * id)
387
+
388
+ # (n_blocks, 2)
389
+ d = d.astype(np.float16).view(np.uint8)
390
+ # (n_blocks, block_size)
391
+ qs = qs.astype(np.int8).view(np.uint8)
392
+
393
+ return np.concatenate([d, qs], axis=1)
394
+
395
+ @classmethod
396
+ def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
397
+ d, x = np.split(blocks, [2], axis=1)
398
+ d = d.view(np.float16).astype(np.float32)
399
+ x = x.view(np.int8).astype(np.float32)
400
+
401
+ return (x * d)
402
+
403
+
404
+ class Q2_K(__Quant, qtype=GGMLQuantizationType.Q2_K):
405
+ @classmethod
406
+ def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
407
+ n_blocks = blocks.shape[0]
408
+
409
+ scales, rest = np.hsplit(blocks, [QK_K // 16])
410
+ qs, rest = np.hsplit(rest, [QK_K // 4])
411
+ d, dmin = np.hsplit(rest, [2])
412
+
413
+ d = d.view(np.float16).astype(np.float32)
414
+ dmin = dmin.view(np.float16).astype(np.float32)
415
+
416
+ # (n_blocks, 16, 1)
417
+ dl = (d * (scales & 0xF).astype(np.float32)).reshape((n_blocks, QK_K // 16, 1))
418
+ ml = (dmin * (scales >> 4).astype(np.float32)).reshape((n_blocks, QK_K // 16, 1))
419
+
420
+ shift = np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1))
421
+
422
+ qs = (qs.reshape((n_blocks, -1, 1, 32)) >> shift) & np.uint8(3)
423
+
424
+ qs = qs.reshape((n_blocks, QK_K // 16, 16)).astype(np.float32)
425
+
426
+ qs = dl * qs - ml
427
+
428
+ return qs.reshape((n_blocks, -1))
429
+
430
+
431
+ class Q3_K(__Quant, qtype=GGMLQuantizationType.Q3_K):
432
+ @classmethod
433
+ def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
434
+ n_blocks = blocks.shape[0]
435
+
436
+ hmask, rest = np.hsplit(blocks, [QK_K // 8])
437
+ qs, rest = np.hsplit(rest, [QK_K // 4])
438
+ scales, d = np.hsplit(rest, [12])
439
+
440
+ d = d.view(np.float16).astype(np.float32)
441
+
442
+ # The scales are packed at 6-bit each in this pattern:
443
+ # 0: IIIIAAAA
444
+ # 1: JJJJBBBB
445
+ # 2: KKKKCCCC
446
+ # 3: LLLLDDDD
447
+ # 4: MMMMEEEE
448
+ # 5: NNNNFFFF
449
+ # 6: OOOOGGGG
450
+ # 7: PPPPHHHH
451
+ # 8: MMIIEEAA
452
+ # 9: NNJJFFBB
453
+ # 10: OOKKGGCC
454
+ # 11: PPLLHHDD
455
+ lscales, hscales = np.hsplit(scales, [8])
456
+ lscales = lscales.reshape((n_blocks, 1, 8)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 2, 1))
457
+ lscales = lscales.reshape((n_blocks, 16))
458
+ hscales = hscales.reshape((n_blocks, 1, 4)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 4, 1))
459
+ hscales = hscales.reshape((n_blocks, 16))
460
+ scales = (lscales & np.uint8(0x0F)) | ((hscales & np.uint8(0x03)) << np.uint8(4))
461
+ scales = (scales.astype(np.int8) - np.int8(32)).astype(np.float32)
462
+
463
+ dl = (d * scales).reshape((n_blocks, 16, 1))
464
+
465
+ ql = qs.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1))
466
+ qh = hmask.reshape(n_blocks, -1, 1, 32) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 8, 1))
467
+ ql = ql.reshape((n_blocks, 16, QK_K // 16)) & np.uint8(3)
468
+ qh = (qh.reshape((n_blocks, 16, QK_K // 16)) & np.uint8(1))
469
+ qh = qh ^ np.uint8(1) # strangely, the offset is zero when the bitmask is 1
470
+ q = (ql.astype(np.int8) - (qh << np.uint8(2)).astype(np.int8)).astype(np.float32)
471
+
472
+ return (dl * q).reshape((n_blocks, QK_K))
473
+
474
+
475
+ class Q4_K(__Quant, qtype=GGMLQuantizationType.Q4_K):
476
+ K_SCALE_SIZE = 12
477
+
478
+ @staticmethod
479
+ def get_scale_min(scales: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
480
+ n_blocks = scales.shape[0]
481
+ scales = scales.view(np.uint8)
482
+ ### Unpacking the following: ###
483
+ # 0 EEAAAAAA
484
+ # 1 FFBBBBBB
485
+ # 2 GGCCCCCC
486
+ # 3 HHDDDDDD
487
+ # 4 eeaaaaaa
488
+ # 5 ffbbbbbb
489
+ # 6 ggcccccc
490
+ # 7 hhdddddd
491
+ # 8 eeeeEEEE
492
+ # 9 ffffFFFF
493
+ # 10 ggggGGGG
494
+ # 11 hhhhHHHH
495
+ scales = scales.reshape((n_blocks, 3, 4))
496
+ d, m, m_d = np.split(scales, 3, axis=-2)
497
+
498
+ sc = np.concatenate([d & 0x3F, (m_d & 0x0F) | ((d >> 2) & 0x30)], axis=-1)
499
+ min = np.concatenate([m & 0x3F, (m_d >> 4) | ((m >> 2) & 0x30)], axis=-1)
500
+
501
+ return (sc.reshape((n_blocks, 8)), min.reshape((n_blocks, 8)))
502
+
503
+ @classmethod
504
+ def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
505
+ n_blocks = blocks.shape[0]
506
+
507
+ d, rest = np.hsplit(blocks, [2])
508
+ dmin, rest = np.hsplit(rest, [2])
509
+ scales, qs = np.hsplit(rest, [cls.K_SCALE_SIZE])
510
+
511
+ d = d.view(np.float16).astype(np.float32)
512
+ dmin = dmin.view(np.float16).astype(np.float32)
513
+
514
+ sc, m = Q4_K.get_scale_min(scales)
515
+
516
+ d = (d * sc.astype(np.float32)).reshape((n_blocks, -1, 1))
517
+ dm = (dmin * m.astype(np.float32)).reshape((n_blocks, -1, 1))
518
+
519
+ qs = qs.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
520
+ qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1, 32)).astype(np.float32)
521
+
522
+ return (d * qs - dm).reshape((n_blocks, QK_K))
523
+
524
+
525
+ class Q5_K(__Quant, qtype=GGMLQuantizationType.Q5_K):
526
+ @classmethod
527
+ def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
528
+ n_blocks = blocks.shape[0]
529
+
530
+ d, rest = np.hsplit(blocks, [2])
531
+ dmin, rest = np.hsplit(rest, [2])
532
+ scales, rest = np.hsplit(rest, [Q4_K.K_SCALE_SIZE])
533
+ qh, qs = np.hsplit(rest, [QK_K // 8])
534
+
535
+ d = d.view(np.float16).astype(np.float32)
536
+ dmin = dmin.view(np.float16).astype(np.float32)
537
+
538
+ sc, m = Q4_K.get_scale_min(scales)
539
+
540
+ d = (d * sc.astype(np.float32)).reshape((n_blocks, -1, 1))
541
+ dm = (dmin * m.astype(np.float32)).reshape((n_blocks, -1, 1))
542
+
543
+ ql = qs.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
544
+ qh = qh.reshape((n_blocks, -1, 1, 32)) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 8, 1))
545
+ ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1, 32))
546
+ qh = (qh & np.uint8(0x01)).reshape((n_blocks, -1, 32))
547
+ q = (ql | (qh << np.uint8(4))).astype(np.float32)
548
+
549
+ return (d * q - dm).reshape((n_blocks, QK_K))
550
+
551
+
552
+ class Q6_K(__Quant, qtype=GGMLQuantizationType.Q6_K):
553
+ @classmethod
554
+ def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
555
+ n_blocks = blocks.shape[0]
556
+
557
+ ql, rest = np.hsplit(blocks, [QK_K // 2])
558
+ qh, rest = np.hsplit(rest, [QK_K // 4])
559
+ scales, d = np.hsplit(rest, [QK_K // 16])
560
+
561
+ scales = scales.view(np.int8).astype(np.float32)
562
+ d = d.view(np.float16).astype(np.float32)
563
+ d = (d * scales).reshape((n_blocks, QK_K // 16, 1))
564
+
565
+ ql = ql.reshape((n_blocks, -1, 1, 64)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
566
+ ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1, 32))
567
+ qh = qh.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1))
568
+ qh = (qh & np.uint8(0x03)).reshape((n_blocks, -1, 32))
569
+ q = (ql | (qh << np.uint8(4))).astype(np.int8) - np.int8(32)
570
+ q = q.reshape((n_blocks, QK_K // 16, -1)).astype(np.float32)
571
+
572
+ return (d * q).reshape((n_blocks, QK_K))
573
+
574
+
575
+ class TQ1_0(__Quant, qtype=GGMLQuantizationType.TQ1_0):
576
+ @classmethod
577
+ def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
578
+ n_blocks = blocks.shape[0]
579
+
580
+ d = abs(blocks).max(axis=-1, keepdims=True)
581
+ with np.errstate(divide="ignore"):
582
+ id = np.where(d == 0, 0, 1 / d)
583
+ qs = np_roundf(blocks * id)
584
+ qs = (qs.astype(np.int8) + np.int8(1)).astype(np.uint8)
585
+
586
+ qs0, qs1, qh = qs[..., :(32 * 5)], qs[..., (32 * 5):(48 * 5)], qs[..., (48 * 5):]
587
+ qs0 = qs0.reshape((n_blocks, -1, 5, 32)) * np.array([81, 27, 9, 3, 1], dtype=np.uint8).reshape((1, 1, 5, 1))
588
+ qs0 = np.sum(qs0, axis=-2).reshape((n_blocks, -1))
589
+ qs1 = qs1.reshape((n_blocks, -1, 5, 16)) * np.array([81, 27, 9, 3, 1], dtype=np.uint8).reshape((1, 1, 5, 1))
590
+ qs1 = np.sum(qs1, axis=-2).reshape((n_blocks, -1))
591
+ qh = qh.reshape((n_blocks, -1, 4, 4)) * np.array([81, 27, 9, 3], dtype=np.uint8).reshape((1, 1, 4, 1))
592
+ qh = np.sum(qh, axis=-2).reshape((n_blocks, -1))
593
+ qs = np.concatenate([qs0, qs1, qh], axis=-1)
594
+ qs = (qs.astype(np.uint16) * 256 + (243 - 1)) // 243
595
+
596
+ qs = qs.astype(np.uint8)
597
+ d = d.astype(np.float16).view(np.uint8)
598
+
599
+ return np.concatenate([qs, d], axis=-1)
600
+
601
+ @classmethod
602
+ def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
603
+ n_blocks = blocks.shape[0]
604
+
605
+ qs, rest = np.hsplit(blocks, [(QK_K - 4 * QK_K // 64) // 5])
606
+ qh, d = np.hsplit(rest, [QK_K // 64])
607
+
608
+ d = d.view(np.float16).astype(np.float32)
609
+
610
+ qs0, qs1 = qs[..., :32], qs[..., 32:]
611
+ qs0 = qs0.reshape((n_blocks, -1, 1, 32)) * np.array([1, 3, 9, 27, 81], dtype=np.uint8).reshape((1, 1, 5, 1))
612
+ qs0 = qs0.reshape((n_blocks, -1))
613
+ qs1 = qs1.reshape((n_blocks, -1, 1, 16)) * np.array([1, 3, 9, 27, 81], dtype=np.uint8).reshape((1, 1, 5, 1))
614
+ qs1 = qs1.reshape((n_blocks, -1))
615
+ qh = qh.reshape((n_blocks, -1, 1, 4)) * np.array([1, 3, 9, 27], dtype=np.uint8).reshape((1, 1, 4, 1))
616
+ qh = qh.reshape((n_blocks, -1))
617
+ qs = np.concatenate([qs0, qs1, qh], axis=-1)
618
+ qs = ((qs.astype(np.uint16) * 3) >> 8).astype(np.int8) - np.int8(1)
619
+
620
+ return (d * qs.astype(np.float32))
621
+
622
+
623
+ class TQ2_0(__Quant, qtype=GGMLQuantizationType.TQ2_0):
624
+ @classmethod
625
+ def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
626
+ n_blocks = blocks.shape[0]
627
+
628
+ d = abs(blocks).max(axis=-1, keepdims=True)
629
+ with np.errstate(divide="ignore"):
630
+ id = np.where(d == 0, 0, 1 / d)
631
+ qs = np_roundf(blocks * id)
632
+ qs = (qs.astype(np.int8) + np.int8(1)).astype(np.uint8)
633
+
634
+ qs = qs.reshape((n_blocks, -1, 4, 32)) << np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1))
635
+ qs = qs[..., 0, :] | qs[..., 1, :] | qs[..., 2, :] | qs[..., 3, :]
636
+ qs = qs.reshape((n_blocks, -1))
637
+
638
+ d = d.astype(np.float16).view(np.uint8)
639
+
640
+ return np.concatenate([qs, d], axis=-1)
641
+
642
+ @classmethod
643
+ def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
644
+ n_blocks = blocks.shape[0]
645
+
646
+ qs, d = np.hsplit(blocks, [QK_K // 4])
647
+
648
+ d = d.view(np.float16).astype(np.float32)
649
+
650
+ qs = qs.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1))
651
+ qs = (qs & 0x03).reshape((n_blocks, -1)).astype(np.int8) - np.int8(1)
652
+
653
+ return (d * qs.astype(np.float32))
654
+
655
+
656
+ class MXFP4(__Quant, qtype=GGMLQuantizationType.MXFP4):
657
+ # e2m1 values (doubled)
658
+ # ref: https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
659
+ kvalues = (0, 1, 2, 3, 4, 6, 8, 12, 0, -1, -2, -3, -4, -6, -8, -12)
660
+
661
+ @staticmethod
662
+ # see ggml_e8m0_to_fp32_half in ggml-impl.h
663
+ def e8m0_to_fp32_half(x: np.ndarray) -> np.ndarray:
664
+ bits = np.where(x < 2, np.uint32(0x00200000) << np.uint32(x), np.uint32(x - 1) << np.uint32(23))
665
+ return bits.view(np.float32)
666
+
667
+ @classmethod
668
+ def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
669
+ n_blocks = blocks.shape[0]
670
+
671
+ d = abs(blocks).max(axis=-1, keepdims=True)
672
+
673
+ with np.errstate(divide="ignore"):
674
+ e = np.where(d > 0, np.floor(np.log2(d)) - 2 + 127, 0).astype(np.uint8)
675
+
676
+ d = cls.e8m0_to_fp32_half(e)
677
+
678
+ kvalues = np.array(cls.kvalues, dtype=np.int8).reshape((1, 1, 16))
679
+
680
+ errs = np.abs(d.reshape((n_blocks, 1, 1)) * kvalues.astype(np.float32) - blocks.reshape((n_blocks, cls.block_size, 1)))
681
+ best = np.argmin(errs, axis=-1, keepdims=True)
682
+
683
+ qs = best.reshape(n_blocks, 2, cls.block_size // 2).astype(np.uint8)
684
+ qs = qs[:, 0] | (qs[:, 1] << np.uint8(4))
685
+
686
+ qs = qs.reshape((n_blocks, cls.block_size // 2))
687
+
688
+ return np.concatenate([e, qs], axis=-1)
689
+
690
+ @classmethod
691
+ def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
692
+ n_blocks = blocks.shape[0]
693
+
694
+ e, qs = np.hsplit(blocks, [1])
695
+
696
+ d = cls.e8m0_to_fp32_half(e)
697
+
698
+ qs = qs.reshape((n_blocks, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 2, 1))
699
+ qs = (qs & np.uint8(0x0F)).view(np.int8)
700
+
701
+ kvalues = np.array(cls.kvalues, dtype=np.int8).reshape(1, 1, 16)
702
+ qs = np.take_along_axis(kvalues, qs, axis=-1).reshape((n_blocks, cls.block_size))
703
+
704
+ return (d * qs.astype(np.float32))
705
+
706
+
707
+ class IQ2_XXS(__Quant, qtype=GGMLQuantizationType.IQ2_XXS):
708
+ ksigns: bytes = (
709
+ b"\x00\x81\x82\x03\x84\x05\x06\x87\x88\x09\x0a\x8b\x0c\x8d\x8e\x0f"
710
+ b"\x90\x11\x12\x93\x14\x95\x96\x17\x18\x99\x9a\x1b\x9c\x1d\x1e\x9f"
711
+ b"\xa0\x21\x22\xa3\x24\xa5\xa6\x27\x28\xa9\xaa\x2b\xac\x2d\x2e\xaf"
712
+ b"\x30\xb1\xb2\x33\xb4\x35\x36\xb7\xb8\x39\x3a\xbb\x3c\xbd\xbe\x3f"
713
+ b"\xc0\x41\x42\xc3\x44\xc5\xc6\x47\x48\xc9\xca\x4b\xcc\x4d\x4e\xcf"
714
+ b"\x50\xd1\xd2\x53\xd4\x55\x56\xd7\xd8\x59\x5a\xdb\x5c\xdd\xde\x5f"
715
+ b"\x60\xe1\xe2\x63\xe4\x65\x66\xe7\xe8\x69\x6a\xeb\x6c\xed\xee\x6f"
716
+ b"\xf0\x71\x72\xf3\x74\xf5\xf6\x77\x78\xf9\xfa\x7b\xfc\x7d\x7e\xff"
717
+ )
718
+
719
+ # iq2xxs_grid, but with each byte of the original packed in 2 bits,
720
+ # by mapping 0x08 to 0, 0x19 to 1, and 0x2b to 2.
721
+ grid_shape = (256, 8)
722
+ grid_map = (0x08, 0x19, 0x2b)
723
+ grid_hex = (
724
+ b"00000200050008000a00110014002000220028002a0041004400500058006100"
725
+ b"6400800082008a00a20001010401100115014001840198010002020222028202"
726
+ b"010404041004210424044004420448046004810484049004a404000502050805"
727
+ b"200546056905800591050906100640068406a406000805080808140828084108"
728
+ b"440850085208880804094009020a140a01100410101021104010601084109010"
729
+ b"951000110811201150115a118011241245120014081420142514491480141815"
730
+ b"6215001616160118041810184018811800190519a019511a002002200a204420"
731
+ b"6120802082202921482100220222012404241024402456240025412564259026"
732
+ b"082820289428442a014004401040184021402440404048405640604081408440"
733
+ b"9040004120416141804185410142104248425642684200440844204480449944"
734
+ b"124524450046014804481048404845480049584961498249454a904a00500850"
735
+ b"1150195020508050885004514251a4519152905492540a550156545600581158"
736
+ b"195864584059085a046010604060686000615561186260620064056410651265"
737
+ b"84654268008002800a8041808280048118814081118201840484108415844084"
738
+ b"608400854685948509864086608602880489118a0490109024904090a1901691"
739
+ b"8091459200942294449451958198209902a050a085a009a100a218a450a804a9"
740
+ )
741
+
742
+ @classmethod
743
+ def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
744
+ n_blocks = blocks.shape[0]
745
+
746
+ d, qs = np.hsplit(blocks, [2])
747
+
748
+ d = d.view(np.float16).astype(np.float32)
749
+
750
+ qs = qs.view(np.uint32).reshape(n_blocks, -1, 2)
751
+
752
+ db = d * (np.float32(0.5) + (qs[..., 1] >> 28).astype(np.float32)) * np.float32(0.25)
753
+ db = db.reshape((n_blocks, -1, 1, 1))
754
+
755
+ # get the sign indices and unpack the bits
756
+ signs = qs[..., 1].reshape((n_blocks, -1, 1)) >> np.array([0, 7, 14, 21], dtype=np.uint32).reshape((1, 1, 4))
757
+ ksigns = np.frombuffer(cls.ksigns, dtype=np.uint8).reshape((1, 1, 1, 128))
758
+ signs = (signs & np.uint32(0x7F)).reshape((n_blocks, -1, 4, 1))
759
+ signs = np.take_along_axis(ksigns, signs, axis=-1)
760
+ signs = signs.reshape((n_blocks, -1, 4, 1)) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 1, 8))
761
+ signs = signs & np.uint8(0x01)
762
+ signs = np.where(signs == 0, np.float32(1), np.float32(-1))
763
+ signs = signs.reshape((n_blocks, -1, 4, 8))
764
+
765
+ assert cls.grid is not None
766
+ grid = np.take_along_axis(cls.grid, qs[..., 0].copy().view(np.uint8).reshape((n_blocks, -1, 1, 1)), axis=-2)
767
+ grid = grid.reshape((n_blocks, -1, 4, 8))
768
+
769
+ return (db * grid * signs).reshape((n_blocks, -1))
770
+
771
+
772
+ class IQ2_XS(__Quant, qtype=GGMLQuantizationType.IQ2_XS):
773
+ # iq2xs_grid, but with each byte of the original packed in 2 bits,
774
+ # by mapping 0x08 to 0, 0x19 to 1, and 0x2b to 2.
775
+ grid_shape = (512, 8)
776
+ grid_map = (0x08, 0x19, 0x2b)
777
+ grid_hex = (
778
+ b"00000200050008000a0011001400160019002000220025002800410044004600"
779
+ b"49005000520055005800610064008000820085008800910094009900a0000101"
780
+ b"04010601090110011201150118011a0121012401400142014501480151015401"
781
+ b"6001680181018401900100020202050208021102140220024102440250025502"
782
+ b"80028a0201040404060409041004120415041804210424044004420445044804"
783
+ b"5104540456046004810484049004000502050505080511051405200541054405"
784
+ b"500561058005010604061006260640064206840600080208050808080a081108"
785
+ b"14082008250841084408500858088008a008aa08010904091009400981098909"
786
+ b"000a200a280a960aa00a01100410061009101010121015101810211024104010"
787
+ b"4210451048105110541060106a10811084109010001102110511081111111411"
788
+ b"2011411144115011801194119611011204120612101240126012001402140514"
789
+ b"0814111414142014411444144914501464148014011504151015401500161416"
790
+ b"49160118041810181218401854188618001905196619511aa91a002002200520"
791
+ b"08200a201120142020204120442050208020a020012104211021402148216521"
792
+ b"002222228022a82201240424102429244024002541255225992501261a26a626"
793
+ b"002808280a28202855288828a22868299029082a202a822a882a8a2a01400440"
794
+ b"0640094010401240154018402140244040404240454048404a40514054406040"
795
+ b"6540814084409040004102410541084111411441204141414441504180418541"
796
+ b"a241014204421042124229424042004402440544084411441444194420444144"
797
+ b"4444504480449444014504451045244540459a4500460a464446504601480448"
798
+ b"1048404845485448624800491149444950496949044a00500250055008501150"
799
+ b"145020502850415044505050805001510451105115514051425100524452aa52"
800
+ b"0154045410542154405460548154a154005508558055885521566856a1560058"
801
+ b"14584158505899581a5940594259855a0160046010604060546062608660a960"
802
+ b"006124624a62926200641664106540654565a46501686a682569066a546a626a"
803
+ b"00800280058008801180148020802a8041804480508080808280a880aa800181"
804
+ b"0481068110814081518159810082208280828282a082a8820184048410841284"
805
+ b"158440846084898400854485a58518866a860088088825885a8880888288a888"
806
+ b"0689228a808a888a968aa88a0190049010904090569084900091229164915692"
807
+ b"89920094059444945094589429959095929541965198a6984999159a609a00a0"
808
+ b"02a008a00aa020a02aa0a0a051a159a1a6a100a202a208a22aa280a2a0a240a4"
809
+ b"95a465a698a60aa820a822a828a8a0a8a8a804a984a986a928aa2aaa91aaaaaa"
810
+ )
811
+
812
+ @classmethod
813
+ def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
814
+ n_blocks = blocks.shape[0]
815
+
816
+ d, rest = np.hsplit(blocks, [2])
817
+ qs, scales = np.hsplit(rest, [2 * QK_K // 8])
818
+
819
+ d = d.view(np.float16).astype(np.float32)
820
+ qs = qs.view(np.uint16)
821
+
822
+ scales = scales.reshape((n_blocks, -1, 1)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2))
823
+ scales = (scales & 0x0F).reshape((n_blocks, -1))
824
+ db = d * (np.float32(0.5) + scales) * np.float32(0.25)
825
+ db = db.reshape((n_blocks, -1, 1, 1))
826
+
827
+ # get the sign indices and unpack the bits
828
+ signs = np.frombuffer(IQ2_XXS.ksigns, dtype=np.uint8).reshape(1, 1, 128)
829
+ signs = np.take_along_axis(signs, (qs >> 9).reshape((n_blocks, -1, 1)), axis=-1)
830
+ signs = signs.reshape((n_blocks, -1, 1)) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 8))
831
+ signs = signs & np.uint8(0x01)
832
+ signs = np.where(signs == 0, np.float32(1), np.float32(-1))
833
+ signs = signs.reshape((n_blocks, -1, 2, 8))
834
+
835
+ assert cls.grid is not None
836
+ grid = np.take_along_axis(cls.grid, (qs & np.uint16(511)).reshape((n_blocks, -1, 1, 1)), axis=-2)
837
+ grid = grid.reshape((n_blocks, -1, 2, 8))
838
+
839
+ return (db * grid * signs).reshape((n_blocks, -1))
840
+
841
+
842
+ class IQ2_S(__Quant, qtype=GGMLQuantizationType.IQ2_S):
843
+ # iq2s_grid, but with each byte of the original packed in 2 bits,
844
+ # by mapping 0x08 to 0, 0x19 to 1, and 0x2b to 2.
845
+ grid_shape = (1024, 8)
846
+ grid_map = (0x08, 0x19, 0x2b)
847
+ grid_hex = (
848
+ b"00000200050008000a0011001400160019002000220025002800410044004600"
849
+ b"490050005200550058006100640066006900800082008500880091009400a000"
850
+ b"a500aa0001010401060109011001120115011801210124014001420145014801"
851
+ b"510154015601590160016501680181018401900192019501a101a40100020202"
852
+ b"050208021102140220022a02410244024602490250025502800285028a029402"
853
+ b"a202010404040604090410041204150418042104240426042904400442044504"
854
+ b"48044a0451045404560459046004620465048104840486048904900495049804"
855
+ b"a104a40400050205050508050a05110514051605190520052505280541054405"
856
+ b"46054905500552055505580561056405800582058505880591059405a0050106"
857
+ b"0406060609061006150640064506480651065406600681068406900600080208"
858
+ b"050808081108140816081908200825082a084108440846084908500852085508"
859
+ b"580861086408800885089408aa08010904091009120915091809210940094509"
860
+ b"480951095409600981099009000a110a140a220a280a2a0a500a990a01100410"
861
+ b"0610091010101210151018102110241026104010421045104810511054105610"
862
+ b"59106010621065106810811084108610901095109810a110a410001102110511"
863
+ b"08110a1111111411161119112011221125112811411144114611491150115211"
864
+ b"5511581161116411801182118511881191119411011204120912101215122112"
865
+ b"2412401245125112541281128412901200140214051408141114141416141914"
866
+ b"2014251428144114441446144914501452145514581461146414801482148514"
867
+ b"881491149414a014011504150615091510151215151518152115241540154215"
868
+ b"4515481551155415601581158415901500160516081611161416201641164416"
869
+ b"50168016aa160118041806180918101815181818211840184218451848185118"
870
+ b"541860188118841800190219051908191119141920194119441950196919a219"
871
+ b"041a101a401a561a00200220052008201120142016201920202025202a204120"
872
+ b"4420502052205520642080208a209420aa200121042110211221152121214021"
873
+ b"4221452151215421602181218421902100220a22222228222a22442250228822"
874
+ b"8a22a82201240424062409241024152418242124242440244224452448245124"
875
+ b"5424602481248424902400250525082511251425202541254425502566258025"
876
+ b"0126042610264026592600280528112814284128442850288a28aa2801290429"
877
+ b"102995290a2a222a642a882a8a2a014004400640094010401240154018401a40"
878
+ b"21402440264040404240454048404a4051405440564059406040624065408140"
879
+ b"8440904095409840a140a4400041024105410841114114411641194120412241"
880
+ b"2541414144414641494150415241554158416141644180418241854188419141"
881
+ b"9441a04101420442104212421542184224424042454248425142544260428142"
882
+ b"844200440244054408440a441144144416441944204422442544284441444444"
883
+ b"46444944504452445544584461446444804482448544884491449444a0440145"
884
+ b"0445064509451045124515451845214524454045424545454845514554456045"
885
+ b"6a4581458445904500460246054608461146144620464146444650468046a546"
886
+ b"0148044809481048124815481848214824484048424845484848514854486048"
887
+ b"84489048004902490549084911491449204941494449504980499649014a044a"
888
+ b"104a404a00500250055008501150145016501950205022502550285041504450"
889
+ b"4650495050505250555058506150645080508250855088509150945001510451"
890
+ b"0651095110511251155118512151245140514251455148515151545160518151"
891
+ b"8451905100520552085211521452205241524452505269528052015404540654"
892
+ b"0954105412541554185421542454405442544554485451545454605481548454"
893
+ b"9054005502550555085511551455205541554455505580550156045610562656"
894
+ b"405600580258055808581158145820584158445850585a588058015904591059"
895
+ b"4059005a195a855aa85a01600460066010601260156018602160246040604560"
896
+ b"4860516054606060846090600061026105610861116114612061416144615061"
897
+ b"806199610462106240625662a162006405640864116414642064416444645064"
898
+ b"806401650465106540654a656865926500669466016804681068656898680069"
899
+ b"2a69426aa16a0080028005800880118014801980208025804180448050805280"
900
+ b"5580588061808080858091809480018104810981108112811581188121812481"
901
+ b"408142814581488151815481818184819081a981008205820a82118214824182"
902
+ b"4482508201840484068409841084128415841884218440844284458448845184"
903
+ b"5484608481848484908400850285058508851185148520854185448550858085"
904
+ b"8a85018604861086298640860088058811881488418844885088a28801890489"
905
+ b"40896589228a588a5a8a828aa28a019004900990109012901590189024904090"
906
+ b"4290459048905190549060908190849090900091059111911491419144915091"
907
+ b"5a910192049210924092a6920094029405940894119414942094419444945094"
908
+ b"8094969401950495109540959895a19500964696649601980498109826984098"
909
+ b"a998009949995299909a00a005a00aa014a022a02aa041a044a050a0a2a0aaa0"
910
+ b"40a165a102a20aa222a228a22aa282a288a28aa2a8a201a404a410a440a489a4"
911
+ b"a4a400a519a551a60aa828a8a2a854a986a908aa0aaa20aa22aa28aa88aaaaaa"
912
+ )
913
+
914
+ @classmethod
915
+ def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
916
+ n_blocks = blocks.shape[0]
917
+
918
+ d, rest = np.hsplit(blocks, [2])
919
+ qs, rest = np.hsplit(rest, [QK_K // 8])
920
+ signs, rest = np.hsplit(rest, [QK_K // 8])
921
+ qh, scales = np.hsplit(rest, [QK_K // 32])
922
+
923
+ d = d.view(np.float16).astype(np.float32)
924
+
925
+ scales = scales.reshape((n_blocks, -1, 1)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2))
926
+ scales = (scales & 0x0F).reshape((n_blocks, -1))
927
+ db = d * (np.float32(0.5) + scales) * np.float32(0.25)
928
+ db = db.reshape((n_blocks, -1, 1, 1))
929
+
930
+ # unpack the sign bits
931
+ signs = signs.reshape((n_blocks, -1, 1)) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 8))
932
+ signs = signs & np.uint8(0x01)
933
+ signs = np.where(signs == 0, np.float32(1), np.float32(-1))
934
+ signs = signs.reshape((n_blocks, -1, 2, 8))
935
+
936
+ qh = qh.reshape((n_blocks, -1, 1)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4))
937
+ qs = qs.astype(np.uint16) | ((qh & 0x03).astype(np.uint16) << 8).reshape((n_blocks, -1))
938
+
939
+ assert cls.grid is not None
940
+ grid = np.take_along_axis(cls.grid, qs.reshape((n_blocks, -1, 1, 1)), axis=-2)
941
+ grid = grid.reshape((n_blocks, -1, 2, 8))
942
+
943
+ return (db * grid * signs).reshape((n_blocks, -1))
944
+
945
+
946
+ class IQ3_XXS(__Quant, qtype=GGMLQuantizationType.IQ3_XXS):
947
+ grid_shape = (256, 4)
948
+ grid_map = (0x04, 0x0c, 0x14, 0x1c, 0x24, 0x2c, 0x34, 0x3e)
949
+ grid_hex = (
950
+ b"0000020004001100130017002000220031004200730075000101030110011201"
951
+ b"2101250130013201410154017001000202020402110220022202310233023702"
952
+ b"5102570275020103070310031203250370031304370444045704730475040105"
953
+ b"0705320552053506640610071407160743076107011003101010121021102310"
954
+ b"3010321034104710501000110211111120112211011203121012121221123012"
955
+ b"7212001302132013311346136613011405145014201524154615711505162217"
956
+ b"4017002002201120132020202220262031204220012103210521102112212121"
957
+ b"3021632167217021002202221122172220222222372240225522012310231423"
958
+ b"7023742335245324032527254125742501270327162745270130103012302130"
959
+ b"2330503065307230003102312031313144314631013203321032253252327232"
960
+ b"1133333330344734723400350635223555351436363663363337603704401740"
961
+ b"3540374053405740744120423742404260426642074345430444514464442545"
962
+ b"4345704505471047124730471250415070500051065126515551145232527252"
963
+ b"0253535310542354275472540255315550562457425724604460466064602161"
964
+ b"6161176264623063366344640565526533660367216703700570077010703270"
965
+ b"5270267140711272457252720073157333736073217441740075027524753076"
966
+ )
967
+
968
+ @classmethod
969
+ def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
970
+ n_blocks = blocks.shape[0]
971
+
972
+ d, rest = np.hsplit(blocks, [2])
973
+ qs, scales = np.hsplit(rest, [QK_K // 4])
974
+
975
+ d = d.view(np.float16).astype(np.float32)
976
+ scales = scales.view(np.uint32)
977
+
978
+ db = d * (np.float32(0.5) + (scales >> 28).astype(np.float32)) * np.float32(0.5)
979
+ db = db.reshape((n_blocks, -1, 1, 1))
980
+
981
+ # get the sign indices and unpack the bits
982
+ signs = scales.reshape((n_blocks, -1, 1)) >> np.array([0, 7, 14, 21], dtype=np.uint32).reshape((1, 1, 4))
983
+ ksigns = np.frombuffer(IQ2_XXS.ksigns, dtype=np.uint8).reshape((1, 1, 1, 128))
984
+ signs = (signs & np.uint32(0x7F)).reshape((n_blocks, -1, 4, 1))
985
+ signs = np.take_along_axis(ksigns, signs, axis=-1)
986
+ signs = signs.reshape((n_blocks, -1, 4, 1)) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 1, 8))
987
+ signs = signs & np.uint8(0x01)
988
+ signs = np.where(signs == 0, np.float32(1), np.float32(-1))
989
+ signs = signs.reshape((n_blocks, -1, 4, 8))
990
+
991
+ assert cls.grid is not None
992
+ grid = np.take_along_axis(cls.grid, qs.reshape((n_blocks, -1, 1, 1)), axis=-2)
993
+ grid = grid.reshape((n_blocks, -1, 4, 8))
994
+
995
+ return (db * grid * signs).reshape((n_blocks, -1))
996
+
997
+
998
+ class IQ3_S(__Quant, qtype=GGMLQuantizationType.IQ3_S):
999
+ grid_shape = (512, 4)
1000
+ grid_map = (0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f)
1001
+ grid_hex = (
1002
+ b"0000010002000500070010001100120014001600200021002500330040004200"
1003
+ b"4500470051005300600062007100740077000001010102010401100111011501"
1004
+ b"2001230127013101350144016101650172010002010205020702100213021602"
1005
+ b"2102250230023402420245024702510253027002730203031103150320032203"
1006
+ b"3103330336034403500352036703710375030004130417042104240432044004"
1007
+ b"4304510470040205040520052205260533054105450547056605730506061106"
1008
+ b"1306310652067106000702070407200722072607330750075407001001100210"
1009
+ b"0410101011101310151017102010221031103410361054105610611072100011"
1010
+ b"0111031106111011141121113011331141115011521170117611001212121512"
1011
+ b"1712201224123212401243125512601272120113041307131013131321132713"
1012
+ b"3013341341136213701303140514121414143114331442144614501454140115"
1013
+ b"1015131521153015321551152016241627164416461601170317101712172117"
1014
+ b"3517411762177017002001200320052007201020122014201620212023202720"
1015
+ b"3020322041204320452050205220672070207320752000210221102113211721"
1016
+ b"2221252131213421422151210122042207222122232230223722412253225722"
1017
+ b"7122742200230223052311232223242331233323422350236623012407242024"
1018
+ b"2324322435244124722475240425112522253725402553257025002602260726"
1019
+ b"2126552661260527112726273027432750270230113013301530173022303130"
1020
+ b"3330353042304430473051306330713001310331053114312131233140316031"
1021
+ b"7231763100321232203232323432503201331033143321332333273330334133"
1022
+ b"4333473355337333033411341634223431345234603464340135103512352535"
1023
+ b"3235443556357335163641360137033720372237353700400440124020402440"
1024
+ b"2740324041405040704002410741114113412241304135414341514155410142"
1025
+ b"0342104215422142334240425742624270420443114313432043224331433543"
1026
+ b"0044024424443744404471440545074521456245134634466046104715473047"
1027
+ b"4347514702501050145022504050445047505250665074500151035105511251"
1028
+ b"2151325172510052115223523052365253520253075310532753445351536553"
1029
+ b"7353015404542054325446541255265551555355425602570457225711601360"
1030
+ b"1560316033606060006120612761646112623462426255626262706200631463"
1031
+ b"2163406325644364626400650365346560650566406611671367007004700770"
1032
+ b"2070227036704070547062700271117124714371457101720472107216722172"
1033
+ b"3072517202733273357353730174057413742074507422754275027631760077"
1034
+ )
1035
+
1036
+ @classmethod
1037
+ def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
1038
+ n_blocks = blocks.shape[0]
1039
+
1040
+ d, rest = np.hsplit(blocks, [2])
1041
+ qs, rest = np.hsplit(rest, [QK_K // 4])
1042
+ qh, rest = np.hsplit(rest, [QK_K // 32])
1043
+ signs, scales = np.hsplit(rest, [QK_K // 8])
1044
+
1045
+ d = d.view(np.float16).astype(np.float32)
1046
+
1047
+ scales = scales.reshape((n_blocks, -1, 1)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2))
1048
+ scales = (scales & 0x0F).reshape((n_blocks, -1))
1049
+ db = d * (1 + 2 * scales)
1050
+ db = db.reshape((n_blocks, -1, 1, 1))
1051
+
1052
+ # unpack the sign bits
1053
+ signs = signs.reshape((n_blocks, -1, 1)) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 8))
1054
+ signs = signs & np.uint8(0x01)
1055
+ signs = np.where(signs == 0, np.float32(1), np.float32(-1))
1056
+ signs = signs.reshape((n_blocks, -1, 4, 8))
1057
+
1058
+ qh = qh.reshape((n_blocks, -1, 1)) >> np.array([i for i in range(8)], dtype=np.uint8)
1059
+ qh = (qh & 0x01).astype(np.uint16).reshape((n_blocks, -1))
1060
+ qs = qs.astype(np.uint16) | (qh << 8)
1061
+
1062
+ assert cls.grid is not None
1063
+ grid = np.take_along_axis(cls.grid, qs.reshape((n_blocks, -1, 1, 1)), axis=-2)
1064
+ grid = grid.reshape((n_blocks, -1, 4, 8))
1065
+
1066
+ return (db * grid * signs).reshape((n_blocks, -1))
1067
+
1068
+
1069
+ class IQ1_S(__Quant, qtype=GGMLQuantizationType.IQ1_S):
1070
+ # iq1s_grid, with each byte packed into 2 bits
1071
+ # -1, 0, 1 <=> 0, 1, 2
1072
+ grid_shape = (2048, 8)
1073
+ grid_map = (-1, 0, 1)
1074
+ grid_hex = (
1075
+ b"00000200050008000a00110015002000220028002a0045005100540056006500"
1076
+ b"8000820088008a009500a000a200a800aa000401050111011401160119011a01"
1077
+ b"2501410146014901520155015a0161016401660168018501910194019601a501"
1078
+ b"0002020208020a0215022002220228022a024502510259026402690280028202"
1079
+ b"88028a02910295029902a002a202a802aa021104140416042504410449045504"
1080
+ b"5a046404650491049904a5040105040505050605150518051a05290540054505"
1081
+ b"4a0550055105540555055605590560056205650568056a058105910595059805"
1082
+ b"9a05a105a405a505a605a9051406190641064406500652065506580660066106"
1083
+ b"6606690685069106940699060008020808080a0815082008220828082a084508"
1084
+ b"5108560865088008820888088a089508a008a208a808aa080509110914091909"
1085
+ b"2409250941095009510955096109640969099109940996099909a509000a020a"
1086
+ b"080a0a0a150a200a220a280a2a0a450a510a590a610a650a800a820a850a880a"
1087
+ b"8a0a950aa00aa20aa80aaa0a1010111014101910241025104110441050105510"
1088
+ b"58106110641065106910911094109610a110a510011104110611091110111211"
1089
+ b"1511181121112411291145114a11501151115211541155115611591160116511"
1090
+ b"841192119511a111a41111121412161225124012461249125212551258125a12"
1091
+ b"641266128512911294129612a512011406140914141415141814191421142614"
1092
+ b"41144514461448144a1451145414551456145914621465146814841489149014"
1093
+ b"94149514981499149a14a114a414a514a914021505150a151115141515151615"
1094
+ b"191520152215251528152a154115441545154615511552155415551556155915"
1095
+ b"5a1561156415651566156915801582158415851588158a159015911594159515"
1096
+ b"961599159a15a015a215a51501160416051606161516161618161a1621162616"
1097
+ b"401642164416451648164a165116551656165816591661166416651668166916"
1098
+ b"6a1686168a1692169516a416a916111816182518411844184618491850185518"
1099
+ b"58185a1860186118641866186918851891189418a5181019121915191a192119"
1100
+ b"25194219441945194819511954195519561959195a19601965196a1989199119"
1101
+ b"921995199819a119a619a919091a161a241a261a441a461a491a501a521a551a"
1102
+ b"581a611a661a691a851a911a961a9a1a0020022008200a201520202022202520"
1103
+ b"28202a20452051205920612065208020822088208a209520a020a220a520a820"
1104
+ b"aa2005211121142119212521422144214921552158215a216121642165216621"
1105
+ b"8521902196219921a521012208220a22112215222022222228222a2245225122"
1106
+ b"562259226522812288228a2291229522a022a222a822aa220524142416241924"
1107
+ b"252444244524462449245224552458245a2466248524912494249924a124a524"
1108
+ b"0925152521252925402545254825512554255525592562256525682589259025"
1109
+ b"9425952598259a25a125a425a625a92505261026122619262526412649265526"
1110
+ b"6026612669268426862690269a260028022808280a2815282028222828282a28"
1111
+ b"45285128542865288028822888288a28a028a228a828aa280929112914291929"
1112
+ b"2529462949295229552961296429662969298529902996299929a429a529002a"
1113
+ b"022a082a0a2a202a222a282a2a2a452a512a562a592a652a802a822a882a8a2a"
1114
+ b"952aa02aa22aa82aaa2a054011401640254049405240554058405a4061406440"
1115
+ b"664094409940a140a6400041014104410641094112411541164118411a412141"
1116
+ b"26412941454148414a41514154415541564159415a41654168416a4181418441"
1117
+ b"8641904192419541a041a141a241054211421442164225424142524255425a42"
1118
+ b"6442694289429442a5420144154419442944454448444a445144544455445644"
1119
+ b"61446244654468446a44814486448944904492449544a044a144a94401450245"
1120
+ b"05450a4511451445154516451945204525452a45414544454545464549455045"
1121
+ b"5145544555455645584559456145644565456645694582458445854588459145"
1122
+ b"94459545964599459a45a545a845aa450146054609461446154618461a462146"
1123
+ b"2446294640464246454648465046514652465546564659466246654668468146"
1124
+ b"85468a4694469546a146a446a6460548114815481a4825484248494850485548"
1125
+ b"5848614864486648694885489148944896489948a5480149054906490a491049"
1126
+ b"144915491849214924492649404945494a495149524954495549564959496049"
1127
+ b"6249654966496a49864989499249954996499849a149a449a649a949164a444a"
1128
+ b"464a494a554a584a5a4a644a694a944aa54a0150045005500650095012501550"
1129
+ b"1a50215024502950405045504850515054505550565059506550685086508950"
1130
+ b"95509850a050a150a650a9500551085109510a51115114511551165118511951"
1131
+ b"20512551265128512a5141514451455146514951505151515251545155515651"
1132
+ b"585159515a51615164516551665169518251855191519451955196519951a051"
1133
+ b"a551aa5101520652125215521a5221522452425245524a525152545255525652"
1134
+ b"595262526552855290529252955299529a52a452045405541154145415541654"
1135
+ b"185419542154255428542a54415444544554465449544a545054515454545554"
1136
+ b"5654585459545a54615462546454655466546954805488548a54915494549554"
1137
+ b"96549954a154a454a554aa540155025504550555065509551055115512551455"
1138
+ b"1555165519551a55215524552555265529554055415542554455455546554855"
1139
+ b"4955505551555255545555555655585559555a55605561556455655566556855"
1140
+ b"69556a5581558455855589558a559055915594559555965598559955a155a455"
1141
+ b"a555a655a9550056015602560456065608560956115614561556185619562056"
1142
+ b"2156225624562556265628562956415645564656485649564a56505651565256"
1143
+ b"545655565656585659565a566156645665566956825685568656885689568a56"
1144
+ b"915695569a56a256a556a656a856a95604580558065809581058155818582158"
1145
+ b"2a58455848584a58515854585558565858585958605862586458655882588958"
1146
+ b"9058925895589858a158a9580159025905590a59115914591559165919592559"
1147
+ b"41594459455946594959505951595259545955595659585959595a5961596459"
1148
+ b"655966596959815985598959915994599559965998599959a559045a085a155a"
1149
+ b"1a5a205a255a265a295a455a485a495a515a555a565a585a595a625a655a685a"
1150
+ b"6a5a815a8a5a925a955a965a985a9a5aa15a0560146016601960256044605060"
1151
+ b"5560566058605a60616064606660696081609660a56001610461066109611261"
1152
+ b"15612161226126612961456149615161556156615961656166616a6184618a61"
1153
+ b"92619561a161a661a96111621662196240624162466255625662586260628562"
1154
+ b"91629662a56211641264156416641a6421642664296440644264456448644a64"
1155
+ b"516454645564566459645a646064626465648464856489649064926494649564"
1156
+ b"966498649a64a164a464a964056508650a651165156516651965446545654665"
1157
+ b"496550655165546555655665596561656465656566656965866589658a659165"
1158
+ b"9565966599659a65a265a565a665a86502660966156620662666286629664066"
1159
+ b"456648664a66516654665566566658665a666066656668668066826685668a66"
1160
+ b"9466966698669966a066a466a666aa661668196825684168526855685a686168"
1161
+ b"6968856891689868a66801690469106915692169246926692969406941694569"
1162
+ b"4669486951695469556956695969606965696a69826984698a699569a169a469"
1163
+ b"a569a969116a166a186a416a446a496a506a556a586a5a6a646a656a696a866a"
1164
+ b"946a986a9a6aa66a0080028008800a802080228028802a804580508051805480"
1165
+ b"5680598065808080828088808a809580a080a280a880aa800581118114811681"
1166
+ b"1981258141814481498150815281558156815881598164816681698185818981"
1167
+ b"948196819981a5810082028208820a8215822082228228822a82518254825982"
1168
+ b"65828082828288828a829582a082a282a882aa82148419844184448451845584"
1169
+ b"5a846184648469849484998401850985128515851a8526852985408541854585"
1170
+ b"4885518554855585568559855a856585668568856a8581858485868589859085"
1171
+ b"928595859885a68511861686198625864186448649864a865086558659865a86"
1172
+ b"618666866a86858691869a86a4860088028808880a8815882088228828882a88"
1173
+ b"41884588518854885988658869888088828888888a889588a088a288a888aa88"
1174
+ b"05890689118914891689258941894489468949895089528955895a8961896489"
1175
+ b"858996899989a589008a028a088a0a8a158a208a228a288a2a8a458a518a548a"
1176
+ b"568a808a828a888a8a8a958aa08aa28aa88aaa8a059011901690189019902590"
1177
+ b"419046904990559058905a9069906a9085909190949096909990a59001910491"
1178
+ b"069109911091159118911a912191249126912991409145915091519154915591"
1179
+ b"569159916291659184918691929195919891a191a491a691a991059211921492"
1180
+ b"19922592449246924992509252925592589266926992859294929692a9920194"
1181
+ b"04940694109415941894269440944a9451945494559456945894599460946194"
1182
+ b"62946594849486949294949495949894a194a9940095059508950a9510951195"
1183
+ b"14951595169519952195259529952a9541954495459546954995509551955295"
1184
+ b"549555955695589559955a956195649565956695699581958595889591959295"
1185
+ b"94959595969599959a95a095a295a595a895aa95019604961096159619962096"
1186
+ b"2696299645964896499651965296559656965996659668968296849689968a96"
1187
+ b"929694969596a496a696a9960598169819982598419846985098529855985698"
1188
+ b"5a98649865988598919896989998a59804990699099910991299159918991a99"
1189
+ b"209921992499269940994299459948994a995199549955995699599962996599"
1190
+ b"66996a99819984999099929995999a99a199a699059a159a259a449a469a499a"
1191
+ b"509a559a589a619a859a919a949a959a969a00a002a008a00aa015a020a022a0"
1192
+ b"28a02aa045a051a054a056a059a080a082a088a08aa095a0a0a0a2a0a8a0aaa0"
1193
+ b"05a109a111a114a116a119a11aa146a149a151a155a158a15aa161a164a185a1"
1194
+ b"90a192a196a199a102a208a20aa210a219a222a228a22aa245a251a256a259a2"
1195
+ b"65a280a282a288a28aa295a2a0a2a2a2a8a2aaa219a425a441a444a450a454a4"
1196
+ b"55a458a45aa461a465a466a468a469a485a406a509a510a512a515a518a526a5"
1197
+ b"29a542a545a551a554a555a556a559a565a56aa581a584a585a586a589a592a5"
1198
+ b"95a598a505a611a616a61aa621a625a644a646a64aa652a655a656a658a660a6"
1199
+ b"62a686a690a695a696a699a6a1a6a4a6a6a600a802a808a80aa820a822a828a8"
1200
+ b"2aa851a854a856a859a880a882a888a88aa895a8a0a8a2a8a8a8aaa805a914a9"
1201
+ b"19a921a925a941a950a955a95aa961a966a969a990a996a900aa02aa08aa0aaa"
1202
+ b"20aa22aa28aa2aaa51aa54aa56aa80aa82aa88aa8aaa95aaa0aaa2aaa8aaaaaa"
1203
+ )
1204
+
1205
+ delta = np.float32(0.125)
1206
+
1207
+ @classmethod
1208
+ def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
1209
+ n_blocks = blocks.shape[0]
1210
+
1211
+ d, rest = np.hsplit(blocks, [2])
1212
+ qs, qh = np.hsplit(rest, [QK_K // 8])
1213
+
1214
+ d = d.view(np.float16).astype(np.float32)
1215
+ qh = qh.view(np.uint16)
1216
+
1217
+ dl = d * (2 * ((qh >> 12) & 7) + 1)
1218
+ dl = dl.reshape((n_blocks, -1, 1, 1))
1219
+ delta = np.where((qh & np.uint16(0x8000)) == 0, cls.delta, -cls.delta)
1220
+ delta = delta.reshape((n_blocks, -1, 1, 1))
1221
+
1222
+ qh = qh.reshape((n_blocks, -1, 1)) >> np.array([0, 3, 6, 9], dtype=np.uint16).reshape((1, 1, 4))
1223
+ qs = qs.astype(np.uint16) | ((qh & 7) << 8).reshape((n_blocks, -1))
1224
+
1225
+ assert cls.grid is not None
1226
+ grid = np.take_along_axis(cls.grid, qs.reshape((n_blocks, -1, 1, 1)), axis=-2)
1227
+ grid = grid.reshape((n_blocks, -1, 4, 8))
1228
+
1229
+ return (dl * (grid + delta)).reshape((n_blocks, -1))
1230
+
1231
+
1232
+ class IQ1_M(__Quant, qtype=GGMLQuantizationType.IQ1_M):
1233
+ grid_shape = IQ1_S.grid_shape
1234
+ grid_map = IQ1_S.grid_map
1235
+ grid_hex = IQ1_S.grid_hex
1236
+
1237
+ delta = IQ1_S.delta
1238
+
1239
+ # Okay *this* type is weird. It's the only one which stores the f16 scales in multiple parts.
1240
+ @classmethod
1241
+ def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
1242
+ n_blocks = blocks.shape[0]
1243
+
1244
+ qs, rest = np.hsplit(blocks, [QK_K // 8])
1245
+ qh, scales = np.hsplit(rest, [QK_K // 16])
1246
+
1247
+ # The f16 scale is packed across multiple bytes
1248
+ scales = scales.view(np.uint16)
1249
+ d = (scales.reshape((n_blocks, 4)) & np.uint16(0xF000)) >> np.array([12, 8, 4, 0], dtype=np.uint16).reshape((1, 4))
1250
+ d = d[..., 0] | d[..., 1] | d[..., 2] | d[..., 3]
1251
+ d = d.view(np.float16).astype(np.float32).reshape((n_blocks, 1))
1252
+
1253
+ scales = scales.reshape(n_blocks, -1, 1) >> np.array([0, 3, 6, 9], dtype=np.uint16).reshape((1, 1, 4))
1254
+ scales = (scales & 0x07).reshape((n_blocks, -1))
1255
+ dl = d * (2 * scales + 1)
1256
+ dl = dl.reshape((n_blocks, -1, 2, 1, 1))
1257
+
1258
+ qh = qh.reshape((n_blocks, -1, 1)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2))
1259
+ qs = qs.astype(np.uint16) | ((qh & 0x07).astype(np.uint16) << 8).reshape((n_blocks, -1))
1260
+
1261
+ delta = np.where(qh & 0x08 == 0, cls.delta, -cls.delta)
1262
+ delta = delta.reshape((n_blocks, -1, 2, 2, 1))
1263
+
1264
+ assert cls.grid is not None
1265
+ grid = np.take_along_axis(cls.grid, qs.reshape((n_blocks, -1, 1, 1)), axis=-2)
1266
+ grid = grid.reshape((n_blocks, -1, 2, 2, 8))
1267
+
1268
+ return (dl * (grid + delta)).reshape((n_blocks, -1))
1269
+
1270
+
1271
+ class IQ4_NL(__Quant, qtype=GGMLQuantizationType.IQ4_NL):
1272
+ kvalues = (-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113)
1273
+
1274
+ @classmethod
1275
+ def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
1276
+ n_blocks = blocks.shape[0]
1277
+
1278
+ d, qs = np.hsplit(blocks, [2])
1279
+
1280
+ d = d.view(np.float16).astype(np.float32)
1281
+
1282
+ qs = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
1283
+
1284
+ qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1, 1))
1285
+
1286
+ kvalues = np.array(cls.kvalues, dtype=np.int8).reshape(1, 1, 16)
1287
+ qs = np.take_along_axis(kvalues, qs, axis=-1).astype(np.float32).reshape((n_blocks, -1))
1288
+
1289
+ return (d * qs)
1290
+
1291
+
1292
+ class IQ4_XS(__Quant, qtype=GGMLQuantizationType.IQ4_XS):
1293
+ @classmethod
1294
+ def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
1295
+ n_blocks = blocks.shape[0]
1296
+
1297
+ d, rest = np.hsplit(blocks, [2])
1298
+ scales_h, rest = np.hsplit(rest, [2])
1299
+ scales_l, qs = np.hsplit(rest, [QK_K // 64])
1300
+
1301
+ d = d.view(np.float16).astype(np.float32)
1302
+ scales_h = scales_h.view(np.uint16)
1303
+
1304
+ scales_l = scales_l.reshape((n_blocks, -1, 1)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2))
1305
+ scales_h = scales_h.reshape((n_blocks, 1, -1)) >> np.array([2 * i for i in range(QK_K // 32)], dtype=np.uint16).reshape((1, -1, 1))
1306
+ scales_l = scales_l.reshape((n_blocks, -1)) & np.uint8(0x0F)
1307
+ scales_h = scales_h.reshape((n_blocks, -1)).astype(np.uint8) & np.uint8(0x03)
1308
+
1309
+ scales = (scales_l | (scales_h << np.uint8(4))).astype(np.int8) - np.int8(32)
1310
+ dl = (d * scales.astype(np.float32)).reshape((n_blocks, -1, 1))
1311
+
1312
+ qs = qs.reshape((n_blocks, -1, 1, 16)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
1313
+ qs = qs.reshape((n_blocks, -1, 32, 1)) & np.uint8(0x0F)
1314
+
1315
+ kvalues = np.array(IQ4_NL.kvalues, dtype=np.int8).reshape((1, 1, 1, -1))
1316
+ qs = np.take_along_axis(kvalues, qs, axis=-1).astype(np.float32).reshape((n_blocks, -1, 32))
1317
+
1318
+ return (dl * qs).reshape((n_blocks, -1))
1319
+
1320
+ # =============================================================================
1321
+ # Helicoidal-Zeta Kernel (Bruno Becker) — clean (no Tk / no UI)
1322
+ # =============================================================================
1323
+ # This section is intentionally dependency-light and does NOT touch quantization
1324
+ # logic above. It provides the exact HelicoidalZetaCore math used in
1325
+ # ΩFFΣLLIα_Ωmegα_GPT.py (kernel only), with an optional prime-indexed variant
1326
+ # aligned with Artigo.txt.
1327
+ #
1328
+ # Sources:
1329
+ # - ΩFFΣLLIα_Ωmegα_GPT.py: HelicoidalZetaCore (Fn/coords/delta_m/zeta_signature/math_embedding)
1330
+ # - Artigo.txt: helicoidal mapping using p_n (n-th prime) and zeta(1/2 + i p_n)
1331
+ # =============================================================================
1332
+
1333
+ from dataclasses import dataclass, field
1334
+
1335
+ try:
1336
+ from mpmath import mp, zeta as _mp_zeta # type: ignore
1337
+ except Exception: # pragma: no cover
1338
+ mp = None
1339
+ _mp_zeta = None
1340
+
1341
+
1342
+ def _require_mpmath() -> None:
1343
+ if mp is None or _mp_zeta is None:
1344
+ raise ImportError(
1345
+ "mpmath is required for zeta_signature(). Install with: pip install mpmath"
1346
+ )
1347
+
1348
+
1349
+ @dataclass
1350
+ class _PrimeCache:
1351
+ """
1352
+ Minimal prime cache to obtain p_n (n-th prime) with no external deps.
1353
+
1354
+ NOTE: n is 1-indexed: p_1 = 2, p_2 = 3, ...
1355
+ """
1356
+ primes: list[int] = field(default_factory=lambda: [2, 3, 5, 7, 11, 13])
1357
+ _checked_upto: int = 13
1358
+
1359
+ @staticmethod
1360
+ def _is_prime(k: int, primes: list[int]) -> bool:
1361
+ if k < 2:
1362
+ return False
1363
+ for p in primes:
1364
+ if p * p > k:
1365
+ return True
1366
+ if k % p == 0:
1367
+ return False
1368
+ return True
1369
+
1370
+ def nth_prime(self, n: int) -> int:
1371
+ if n <= 0:
1372
+ raise ValueError("n must be >= 1 (1-indexed) for nth_prime")
1373
+ candidate = self._checked_upto
1374
+ if candidate % 2 == 0:
1375
+ candidate += 1
1376
+ while len(self.primes) < n:
1377
+ candidate += 2
1378
+ if self._is_prime(candidate, self.primes):
1379
+ self.primes.append(candidate)
1380
+ self._checked_upto = candidate
1381
+ return self.primes[n - 1]
1382
+
1383
+
1384
+ @dataclass
1385
+ class HelicoidalZetaCore:
1386
+ """
1387
+ Kernel matemático helicoidal-zeta (sem UI).
1388
+
1389
+ Mantém a matemática exatamente como no kernel do arquivo ΩFFΣLLIα_Ωmegα_GPT.py:
1390
+ - phi = (1 + sqrt(5)) / 2
1391
+ - Fn(n) = sin(2π φ n)^2
1392
+ - coords(n) = [x, y, z] com r = Fn(n), θ = 2π φ n, (x,y) = r(cosθ, sinθ), z=n
1393
+ - delta_m(n,m) = 1.0 se n ≡ 0 (mod m) senão 0.42
1394
+ - zeta_signature(n) = (Re, Im) de ζ(1/2 + i n)
1395
+ - math_embedding(n) = concat([coords(n)*delta, [r, θ], zeta_signature(n)])
1396
+ (igual ao código original)
1397
+ """
1398
+ zeta_dps: int = 25
1399
+ delta_modulus: int = 42
1400
+ delta_else: float = 0.42
1401
+
1402
+ # optional prime-indexing (Artigo.txt): use p_n instead of n
1403
+ use_primes: bool = False
1404
+ _prime_cache: _PrimeCache = field(default_factory=_PrimeCache)
1405
+
1406
+ def __post_init__(self) -> None:
1407
+ self.phi = (1.0 + float(np.sqrt(5.0))) / 2.0
1408
+ if mp is not None:
1409
+ mp.dps = int(self.zeta_dps)
1410
+
1411
+ def _n_to_eval(self, n: int) -> int:
1412
+ if not self.use_primes:
1413
+ return int(n)
1414
+ return int(self._prime_cache.nth_prime(int(n)))
1415
+
1416
+ def Fn(self, n: int) -> float:
1417
+ nn = self._n_to_eval(n)
1418
+ return float(np.sin(2.0 * np.pi * self.phi * nn) ** 2)
1419
+
1420
+ def coords(self, n: int) -> np.ndarray:
1421
+ nn = self._n_to_eval(n)
1422
+ r = float(np.sin(2.0 * np.pi * self.phi * nn) ** 2)
1423
+ t = 2.0 * np.pi * self.phi * nn
1424
+ x = r * float(np.cos(t))
1425
+ y = r * float(np.sin(t))
1426
+ z = float(nn)
1427
+ return np.array([x, y, z], dtype=np.float64)
1428
+
1429
+ def delta_m(self, n: int, m: int | None = None) -> float:
1430
+ nn = self._n_to_eval(n)
1431
+ mm = int(self.delta_modulus if m is None else m)
1432
+ return 1.0 if (nn % mm) == 0 else float(self.delta_else)
1433
+
1434
+ def zeta_signature(self, n: int) -> np.ndarray:
1435
+ _require_mpmath()
1436
+ nn = self._n_to_eval(n)
1437
+ if mp is not None:
1438
+ mp.dps = int(self.zeta_dps)
1439
+ s = mp.mpc(0.5, float(nn))
1440
+ val = _mp_zeta(s)
1441
+ return np.array([float(val.real), float(val.imag)], dtype=np.float64)
1442
+ raise RuntimeError("mpmath not available")
1443
+
1444
+ def math_embedding(self, n: int) -> np.ndarray:
1445
+ nn = self._n_to_eval(n)
1446
+ coords = self.coords(n)
1447
+ r = float(np.sin(2.0 * np.pi * self.phi * nn) ** 2)
1448
+ theta = 2.0 * np.pi * self.phi * nn
1449
+ delta = self.delta_m(n)
1450
+ zeta_vals = self.zeta_signature(n)
1451
+ # Vetor final (compatível com o kernel original):
1452
+ # [xδ, yδ, zδ, r, θ, Re(Zeta), Im(Zeta)]
1453
+ return np.concatenate([coords * delta, np.array([r, theta], dtype=np.float64), zeta_vals])
1454
+
1455
+ def transform(self, x: np.ndarray, n_val: int) -> np.ndarray:
1456
+ emb = self.math_embedding(n_val)
1457
+ return x * float(np.mean(emb))
1458
+
1459
+
1460
+ def helicoidal_zeta_scale(n_val: int, *, use_primes: bool = False, zeta_dps: int = 25) -> float:
1461
+ """
1462
+ Retorna o escalar multiplicativo usado por transform(): mean(math_embedding).
1463
+ """
1464
+ core = HelicoidalZetaCore(use_primes=use_primes, zeta_dps=zeta_dps)
1465
+ emb = core.math_embedding(int(n_val))
1466
+ return float(np.mean(emb))
1467
+
1468
+
1469
+ __all__ = [
1470
+ "HelicoidalZetaCore",
1471
+ "helicoidal_zeta_scale",
1472
+ ]