File size: 13,469 Bytes
fc707cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
DESCRIPTION = '''The Capacitated Vehicle Routing Problem (CVRP) is a classic optimization problem that extends the Traveling Salesman Problem. In the CVRP, a fleet of vehicles with limited capacity must service a set of customers with specific demands, starting and ending at a central depot. Each customer must be visited exactly once by exactly one vehicle, and the total demand of customers on a single vehicle's route cannot exceed the vehicle's capacity. The objective is to minimize the total travel distance while satisfying all customer demands and vehicle capacity constraints.'''

import numpy as np
import math


def solve(**kwargs):
    """
    Solve a CVRP instance.

    Args:
        - nodes (list): List of (x, y) coordinates representing locations (depot and customers)
                     Format: [(x1, y1), (x2, y2), ..., (xn, yn)]
        - demands (list): List of customer demands, where demands[i] is the demand for customer i
                     Format: [d0, d1, d2, ..., dn]
        - capacity (int): Vehicle capacity
        - depot_idx (int): Index of the depot in the nodes list (typically 0)

    Returns:
        dict: Solution information with:
            - 'routes' (list): List of routes, where each route is a list of node indices
                            Format: [[0, 3, 1, 0], [0, 2, 5, 0], ...] where 0 is the depot
    """

    # This is a placeholder implementation
    # Your solver implementation would go here
    # Your function must yield multiple solutions over time, not just return one solution
    # Use Python's yield keyword repeatedly to produce a stream of solutions
    # Each yielded solution should be better than the previous one
    while True:
        yield {
            'routes': [],
        }


def load_data(file_path):
    """
    Load CVRP instances from .vrp files.

    Args:
        file_path (str): Path to the file containing CVRP instances

    Returns:
        list: List of dictionaries, each containing a CVRP instance with:
            - 'nodes': List of (x, y) coordinates
            - 'demands': List of customer demands
            - 'capacity': Vehicle capacity
            - 'depot_idx': Index of the depot (typically 0)
            - 'optimal_routes': List of optimal routes (if available)
    """
    instances = []

    try:
        n, capacity, coordinates, demands, dist_matrix, depot_idx = read_vrp_file(file_path)

        # Create a dictionary for this instance
        instance = {
            'nodes': coordinates,
            'demands': demands,
            'capacity': capacity,
            'depot_idx': depot_idx,
            'dist_matrix': dist_matrix,
            'optimal_routes': None  # Typically not available in .vrp files
        }

        instances.append(instance)
    except Exception as e:
        print(f"Error processing file {file_path}: {e}")

    return instances


def read_vrp_file(filename):
    """Read CVRP Problem instance from a .vrp file."""
    with open(filename, 'r') as f:
        lines = f.readlines()

        # Parse metadata from header
        n = None  # Number of nodes (including depot)
        capacity = None
        coordinates = []
        demands = []
        depot_idx = 0  # Default depot index - node 1 (0-indexed) is standard default
        depot_found = False

        # Read through file sections
        section = None
        for line in lines:
            line = line.strip()

            # Skip empty lines
            if not line:
                continue

            # Check for section headers
            if line.startswith("DIMENSION"):
                n = int(line.split(":")[1].strip())
            elif line.startswith("CAPACITY"):
                capacity = int(line.split(":")[1].strip())
            elif line == "NODE_COORD_SECTION":
                section = "coords"
                continue
            elif line == "DEMAND_SECTION":
                section = "demand"
                continue
            elif line == "DEPOT_SECTION":
                section = "depot"
                depot_found = True
                continue
            elif line == "EOF":
                break

            # Parse data based on current section
            if section == "coords":
                parts = line.split()
                if len(parts) >= 3:
                    node_id = int(parts[0]) - 1  # Convert to 0-indexed
                    x = float(parts[1])
                    y = float(parts[2])

                    # Ensure we have a spot in the array for this node
                    while len(coordinates) <= node_id:
                        coordinates.append(None)

                    coordinates[node_id] = (x, y)

            elif section == "demand":
                parts = line.split()
                if len(parts) >= 2:
                    node_id = int(parts[0]) - 1  # Convert to 0-indexed
                    demand = int(parts[1])

                    # Ensure we have a spot in the array for this demand
                    while len(demands) <= node_id:
                        demands.append(None)

                    demands[node_id] = demand

            elif section == "depot":
                try:
                    depot = int(line)
                    if depot > 0:  # Valid depot ID
                        depot_idx = depot - 1  # Convert to 0-indexed
                except ValueError:
                    pass  # Skip if not a valid depot ID

        # Ensure all node coordinates and demands are loaded
        if n is None:
            n = len(coordinates)

        # Handle special cases for depot identification
        if not depot_found:
            # Check if there's a node with zero demand - that's often the depot
            for i, demand in enumerate(demands):
                if demand == 0:
                    depot_idx = i
                    break
            # Otherwise, use node 0 as default depot (common convention)

        # Calculate distance matrix
        coords = np.array(coordinates)

        # Calculate pairwise squared differences
        x_diff = coords[:, 0, np.newaxis] - coords[:, 0]
        y_diff = coords[:, 1, np.newaxis] - coords[:, 1]

        # Calculate Euclidean distances
        dist_matrix = np.sqrt(x_diff ** 2 + y_diff ** 2)

        # Set diagonal to zero (optional, as it should already be zero)
        np.fill_diagonal(dist_matrix, 0)

    return n, capacity, coordinates, demands, dist_matrix, depot_idx


def eval_func(nodes, demands, capacity, depot_idx, optimal_routes, routes, **kwargs):
    """
    Evaluate a predicted CVRP solution against optimal routes or calculate total distance.

    Args:
        nodes (list): List of (x, y) coordinates representing locations
                    Format: [(x1, y1), (x2, y2), ..., (xn, yn)]
        demands (list): List of customer demands
                    Format: [d0, d1, d2, ..., dn]
        capacity (int): Vehicle capacity
        depot_idx (int): Index of the depot (typically 0)
        optimal_routes (list): Reference optimal routes (may be None if not available)
                            Format: [[0, 3, 1, 0], [0, 2, 5, 0], ...]
        predicted_routes (list): Predicted routes from the solver
                              Format: [[0, 3, 1, 0], [0, 2, 5, 0], ...]

    Returns:
        float: Optimality gap percentage if optimal_routes is provided,
              or just the predicted solution's total distance
    """
    # Validate solution
    validate_cvrp_solution(nodes, demands, capacity, depot_idx, routes)

    # Calculate the predicted solution cost (total distance)
    pred_cost = calculate_total_distance(nodes, routes)

    # If optimal routes are provided, calculate optimality gap
    if optimal_routes:
        opt_cost = calculate_total_distance(nodes, optimal_routes)
        opt_gap = ((pred_cost / opt_cost) - 1) * 100
        return opt_gap

    # Otherwise, just return the predicted cost
    return pred_cost


def validate_cvrp_solution(nodes, demands, capacity, depot_idx, routes):
    """
    Validate that a CVRP solution meets all constraints.

    Args:
        nodes (list): List of (x, y) coordinates
        demands (list): List of customer demands
        capacity (int): Vehicle capacity
        depot_idx (int): Index of the depot
        routes (list): List of routes to validate

    Raises:
        Exception: If the solution is invalid
    """
    num_nodes = len(nodes)
    all_visited = set()

    for route_idx, route in enumerate(routes):
        # Check that route starts and ends at depot
        if route[0] != depot_idx or route[-1] != depot_idx:
            raise Exception(f"Route {route_idx} does not start and end at the depot")

        # Check capacity constraint
        route_demand = sum(demands[i] for i in route[1:-1])  # Exclude depot
        if route_demand > capacity:
            raise Exception(f"Route {route_idx} exceeds capacity: {route_demand} > {capacity}")

        # Check that nodes are valid indices
        for node in route:
            if node < 0 or node >= num_nodes:
                raise Exception(f"Invalid node index {node} in route {route_idx}")

            # Add to visited set (excluding depot)
            if node != depot_idx:
                all_visited.add(node)

    # Check that all customers are visited exactly once
    expected_visited = set(range(num_nodes))
    expected_visited.remove(depot_idx)  # Exclude depot

    if all_visited != expected_visited:
        missing = expected_visited - all_visited
        duplicate = all_visited - expected_visited

        if missing:
            raise Exception(f"Nodes not visited: {missing}")
        if duplicate:
            raise Exception(f"Nodes visited more than once: {duplicate}")


def calculate_total_distance(nodes, routes):
    """
    Calculate the total distance of a CVRP solution.

    Args:
        nodes (list): List of (x, y) coordinates
        routes (list): List of routes

    Returns:
        float: Total distance of all routes
    """
    total_distance = 0

    for route in routes:
        route_distance = 0
        for i in range(len(route) - 1):
            from_node = route[i]
            to_node = route[i + 1]

            # Calculate Euclidean distance
            from_x, from_y = nodes[from_node]
            to_x, to_y = nodes[to_node]
            segment_distance = math.sqrt((to_x - from_x) ** 2 + (to_y - from_y) ** 2)

            route_distance += segment_distance

        total_distance += route_distance

    return total_distance

def norm_score(results):
    optimal_scores = {'easy_test_instances/Golden_13.vrp': [857.188745], 'easy_test_instances/Golden_17.vrp': [707.755935], 'easy_test_instances/Golden_10.vrp': [735.43], 'easy_test_instances/Golden_19.vrp': [1365.6], 'easy_test_instances/Golden_7.vrp': [10023.844627], 'easy_test_instances/Golden_3.vrp': [10785.779388], 'easy_test_instances/Golden_1.vrp': [5370.545835], 'easy_test_instances/Golden_8.vrp': [11486.585777], 'easy_test_instances/Golden_12.vrp': [1100.67], 'easy_test_instances/Golden_5.vrp': [6460.979519], 'easy_test_instances/Golden_18.vrp': [995.13], 'easy_test_instances/Golden_9.vrp': [579.7], 'easy_test_instances/Golden_11.vrp': [911.98], 'easy_test_instances/Golden_4.vrp': [13541.657456], 'easy_test_instances/Golden_16.vrp': [1611.28], 'easy_test_instances/Golden_6.vrp': [8348.949187], 'easy_test_instances/Golden_15.vrp': [1337.27], 'easy_test_instances/Golden_2.vrp': [8205.866802], 'easy_test_instances/Golden_20.vrp': [1817.59], 'easy_test_instances/Golden_14.vrp': [1080.55], 'hard_test_instances/Leuven1.vrp': [192848.0], 'hard_test_instances/Leuven2.vrp': [111391.0], 'hard_test_instances/Antwerp1.vrp': [477277.0], 'hard_test_instances/Antwerp2.vrp': [291350.0], 'hard_test_instances/Ghent1.vrp': [469531.0], 'hard_test_instances/Ghent2.vrp': [257748.0], 'hard_test_instances/Brussels1.vrp': [501719.0], 'hard_test_instances/Brussels2.vrp': [345468.0], 'hard_test_instances/Flanders1.vrp': [7240118.0], 'hard_test_instances/Flanders2.vrp': [4373244.0], 'valid_instances/instance_100_5.vrp': [1269.090891], 'valid_instances/instance_100_1.vrp': [1322.220351], 'valid_instances/instance_100_2.vrp': [1273.835052], 'valid_instances/instance_100_3.vrp': [1239.690157], 'valid_instances/instance_100_4.vrp': [1289.129098], 'valid_instances/instance_50_1.vrp': [753.946825], 'valid_instances/instance_50_3.vrp': [826.843367], 'valid_instances/instance_50_5.vrp': [818.44171], 'valid_instances/instance_50_4.vrp': [776.674785], 'valid_instances/instance_20_1.vrp': [453.252768], 'valid_instances/instance_50_2.vrp': [743.427813], 'valid_instances/instance_20_3.vrp': [487.1528], 'valid_instances/instance_20_4.vrp': [463.300497], 'valid_instances/instance_20_5.vrp': [388.950037], 'valid_instances/instance_20_2.vrp': [455.784836]}

    normed = {}
    for case, (scores, error_message) in results.items():
        if case not in optimal_scores:
            continue  # Skip if there's no optimal score defined.
        optimal_list = optimal_scores[case]
        normed_scores = []
        # Compute normalized score for each index.
        for idx, score in enumerate(scores):
            if isinstance(score, (int, float)):
                normed_scores.append(1 - abs(score - optimal_list[idx]) / max(score, optimal_list[idx]))
            else:
                normed_scores.append(score)
        normed[case] = (normed_scores, error_message)

    return normed