|
|
|
|
|
import numpy as np |
|
|
import cv2 |
|
|
from scipy import signal |
|
|
|
|
|
''' |
|
|
helper function |
|
|
''' |
|
|
def filterItChopOff(f, r, sp): |
|
|
f[np.isnan(f)] = 0 |
|
|
H, W, d = f.shape |
|
|
B = np.ones([2 * r + 1, 2 * r + 1]) |
|
|
|
|
|
minSP = cv2.erode(sp, B, iterations=1) |
|
|
maxSP = cv2.dilate(sp, B, iterations=1) |
|
|
|
|
|
ind = np.where(np.logical_or(minSP != sp, maxSP != sp)) |
|
|
|
|
|
spInd = np.reshape(range(np.size(sp)), sp.shape,'F') |
|
|
|
|
|
delta = np.zeros(f.shape) |
|
|
delta = np.reshape(delta, (H * W, d), 'F') |
|
|
f = np.reshape(f, (H * W, d),'F') |
|
|
|
|
|
|
|
|
|
|
|
I, J = np.unravel_index(ind, [H, W], 'C') |
|
|
for i in range(np.size(ind)): |
|
|
x = I[i] |
|
|
y = J[i] |
|
|
clipInd = spInd[max(0, x - r):min(H-1, x + r), max(0, y - r):min(W-1, y + r)] |
|
|
diffInd = clipInd[sp[clipInd] != sp[x, y]] |
|
|
delta[ind[i], :] = np.sum(f[diffInd, :], 1) |
|
|
delta = np.reshape(delta, (H, W, d), 'F') |
|
|
f = np.reshape(f, (H, W, d), 'F') |
|
|
fFilt = np.zeros([H, W, d]) |
|
|
|
|
|
for i in range(f.shape[2]): |
|
|
|
|
|
tmp = cv2.filter2D(np.rot90(f[:, :, i], 2), -1, np.rot90(np.rot90(B, 2), 2)) |
|
|
tmp = signal.convolve2d(np.rot90(f[:, :, i], 2), np.rot90(np.rot90(B, 2), 2), mode="same") |
|
|
fFilt[:, :, i] = np.rot90(tmp, 2) |
|
|
fFilt = fFilt - delta |
|
|
return fFilt |
|
|
|
|
|
''' |
|
|
helper function |
|
|
''' |
|
|
def mutiplyIt(AtA_1, Atb): |
|
|
result = np.zeros([Atb.shape[0], Atb.shape[1], 3]) |
|
|
result[:, :, 0] = np.multiply(AtA_1[:, :, 0], Atb[:, :, 0]) + np.multiply(AtA_1[:, :, 1], |
|
|
Atb[:, :, 1]) + np.multiply( |
|
|
AtA_1[:, :, 2], Atb[:, :, 2]) |
|
|
result[:, :, 1] = np.multiply(AtA_1[:, :, 1], Atb[:, :, 0]) + np.multiply(AtA_1[:, :, 3], |
|
|
Atb[:, :, 1]) + np.multiply( |
|
|
AtA_1[:, :, 4], Atb[:, :, 2]) |
|
|
result[:, :, 2] = np.multiply(AtA_1[:, :, 2], Atb[:, :, 0]) + np.multiply(AtA_1[:, :, 4], |
|
|
Atb[:, :, 1]) + np.multiply( |
|
|
AtA_1[:, :, 5], Atb[:, :, 2]) |
|
|
return result |
|
|
|
|
|
''' |
|
|
helper function |
|
|
''' |
|
|
def invertIt(AtA): |
|
|
AtA_1 = np.zeros([AtA.shape[0], AtA.shape[1], 6]) |
|
|
AtA_1[:, :, 0] = np.multiply(AtA[:, :, 3], AtA[:, :, 5]) - np.multiply(AtA[:, :, 4], AtA[:, :, 4]) |
|
|
AtA_1[:, :, 1] = -np.multiply(AtA[:, :, 1], AtA[:, :, 5]) + np.multiply(AtA[:, :, 2], AtA[:, :, 4]) |
|
|
AtA_1[:, :, 2] = np.multiply(AtA[:, :, 1], AtA[:, :, 4]) - np.multiply(AtA[:, :, 2], AtA[:, :, 3]) |
|
|
AtA_1[:, :, 3] = np.multiply(AtA[:, :, 0], AtA[:, :, 5]) - np.multiply(AtA[:, :, 2], AtA[:, :, 2]) |
|
|
AtA_1[:, :, 4] = -np.multiply(AtA[:, :, 0], AtA[:, :, 4]) + np.multiply(AtA[:, :, 1], AtA[:, :, 2]) |
|
|
AtA_1[:, :, 5] = np.multiply(AtA[:, :, 0], AtA[:, :, 3]) - np.multiply(AtA[:, :, 1], AtA[:, :, 1]) |
|
|
|
|
|
x1 = np.multiply(AtA[:, :, 0], AtA_1[:, :, 0]) |
|
|
x2 = np.multiply(AtA[:, :, 1], AtA_1[:, :, 1]) |
|
|
x3 = np.multiply(AtA[:, :, 2], AtA_1[:, :, 2]) |
|
|
|
|
|
detAta = x1 + x2 + x3 |
|
|
return AtA_1, detAta |
|
|
|
|
|
''' |
|
|
Compute the direction of gravity |
|
|
N: normal field |
|
|
iter: number of 'big' iterations |
|
|
''' |
|
|
def getYDir(N, angleThresh, iter, y0): |
|
|
y = y0 |
|
|
for i in range(len(angleThresh)): |
|
|
thresh = np.pi * angleThresh[i] / 180 |
|
|
y = getYDirHelper(N, y, thresh, iter[i]) |
|
|
return y |
|
|
|
|
|
''' |
|
|
N: HxWx3 matrix with normal at each pixel. |
|
|
y0: the initial gravity direction |
|
|
thresh: in degrees the threshold for mapping to parallel to gravity and perpendicular to gravity |
|
|
iter: number of iterations to perform |
|
|
''' |
|
|
def getYDirHelper(N, y0, thresh, num_iter): |
|
|
dim = N.shape[0] * N.shape[1] |
|
|
|
|
|
|
|
|
nn = np.swapaxes(np.swapaxes(N,0,2),1,2) |
|
|
nn = np.reshape(nn, (3, dim), 'F') |
|
|
|
|
|
|
|
|
idx = np.where(np.invert(np.isnan(nn[0,:])))[0] |
|
|
nn = nn[:,idx] |
|
|
|
|
|
|
|
|
yDir = y0; |
|
|
for i in range(num_iter): |
|
|
sim0 = np.dot(yDir.T, nn) |
|
|
indF = abs(sim0) > np.cos(thresh) |
|
|
indW = abs(sim0) < np.sin(thresh) |
|
|
if(len(indF.shape) == 2): |
|
|
NF = nn[:, indF[0,:]] |
|
|
NW = nn[:, indW[0,:]] |
|
|
else: |
|
|
NF = nn[:, indF] |
|
|
NW = nn[:, indW] |
|
|
A = np.dot(NW, NW.T) - np.dot(NF, NF.T) |
|
|
b = np.zeros([3,1]) |
|
|
c = NF.shape[1] |
|
|
w,v = np.linalg.eig(A) |
|
|
min_ind = np.argmin(w) |
|
|
newYDir = v[:,min_ind] |
|
|
yDir = newYDir * np.sign(np.dot(yDir.T, newYDir)) |
|
|
return yDir |
|
|
|
|
|
''' |
|
|
getRMatrix: Generate a rotation matrix that |
|
|
if yf is a scalar, rotates about axis yi by yf degrees |
|
|
if yf is an axis, rotates yi to yf in the direction given by yi x yf |
|
|
Input: yi is an axis 3x1 vector |
|
|
yf could be a scalar of axis |
|
|
|
|
|
''' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def getRMatrix(yi, yf): |
|
|
if (np.isscalar(yf)): |
|
|
ax = yi / np.linalg.norm(yi) |
|
|
phi = yf |
|
|
else: |
|
|
yi = yi / np.linalg.norm(yi) |
|
|
yf = yf / np.linalg.norm(yf) |
|
|
ax = np.cross(yi.T, yf.T).T |
|
|
ax = ax / np.linalg.norm(ax) |
|
|
|
|
|
phi = np.degrees(np.arccos(np.dot(yi.T, yf))) |
|
|
ax = np.squeeze(ax, axis=-1) |
|
|
|
|
|
if (abs(phi) > 0.1): |
|
|
phi = phi * (np.pi / 180) |
|
|
|
|
|
s_hat = np.array([[0, -ax[2], ax[1]], |
|
|
[ax[2], 0, -ax[0]], |
|
|
[-ax[1], ax[0], 0]], dtype=np.float64) |
|
|
R = np.eye(3) + np.sin(phi) * s_hat + (1 - np.cos(phi)) * np.dot(s_hat, s_hat) |
|
|
else: |
|
|
R = np.eye(3) |
|
|
return R |
|
|
|
|
|
''' |
|
|
Calibration of gravity direction |
|
|
''' |
|
|
def rotatePC(pc, R): |
|
|
if(np.array_equal(R, np.eye(3))): |
|
|
return pc |
|
|
else: |
|
|
R = R.astype(np.float64) |
|
|
dim = pc.shape[0] * pc.shape[1] |
|
|
pc = np.swapaxes(np.swapaxes(pc, 0, 2), 1, 2) |
|
|
res = np.reshape(pc, (3, dim), 'F') |
|
|
res = np.dot(R, res) |
|
|
res = np.reshape(res, pc.shape, 'F') |
|
|
res = np.swapaxes(np.swapaxes(res, 0, 1), 1, 2) |
|
|
return res |