File size: 9,701 Bytes
853e22b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

import torch
from torch.nn.modules.loss import _Loss

from monai.utils import LossReduction


def spatial_gradient(x: torch.Tensor, dim: int) -> torch.Tensor:
    """
    Calculate gradients on single dimension of a tensor using central finite difference.
    It moves the tensor along the dimension to calculate the approximate gradient
    dx[i] = (x[i+1] - x[i-1]) / 2.
    Adapted from:
        DeepReg (https://github.com/DeepRegNet/DeepReg)

    Args:
        x: the shape should be BCH(WD).
        dim: dimension to calculate gradient along.
    Returns:
        gradient_dx: the shape should be BCH(WD)
    """
    slice_1 = slice(1, -1)
    slice_2_s = slice(2, None)
    slice_2_e = slice(None, -2)
    slice_all = slice(None)
    slicing_s, slicing_e = [slice_all, slice_all], [slice_all, slice_all]
    while len(slicing_s) < x.ndim:
        slicing_s = slicing_s + [slice_1]
        slicing_e = slicing_e + [slice_1]
    slicing_s[dim] = slice_2_s
    slicing_e[dim] = slice_2_e
    return (x[slicing_s] - x[slicing_e]) / 2.0


class BendingEnergyLoss(_Loss):
    """
    Calculate the bending energy based on second-order differentiation of ``pred`` using central finite difference.

    For more information,
    see https://github.com/Project-MONAI/tutorials/blob/main/modules/bending_energy_diffusion_loss_notes.ipynb.

    Adapted from:
        DeepReg (https://github.com/DeepRegNet/DeepReg)
    """

    def __init__(self, normalize: bool = False, reduction: LossReduction | str = LossReduction.MEAN) -> None:
        """
        Args:
            normalize:
                Whether to divide out spatial sizes in order to make the computation roughly
                invariant to image scale (i.e. vector field sampling resolution). Defaults to False.
            reduction: {``"none"``, ``"mean"``, ``"sum"``}
                Specifies the reduction to apply to the output. Defaults to ``"mean"``.

                - ``"none"``: no reduction will be applied.
                - ``"mean"``: the sum of the output will be divided by the number of elements in the output.
                - ``"sum"``: the output will be summed.
        """
        super().__init__(reduction=LossReduction(reduction).value)
        self.normalize = normalize

    def forward(self, pred: torch.Tensor) -> torch.Tensor:
        """
        Args:
            pred: the shape should be BCH(WD)

        Raises:
            ValueError: When ``self.reduction`` is not one of ["mean", "sum", "none"].
            ValueError: When ``pred`` is not 3-d, 4-d or 5-d.
            ValueError: When any spatial dimension of ``pred`` has size less than or equal to 4.
            ValueError: When the number of channels of ``pred`` does not match the number of spatial dimensions.

        """
        if pred.ndim not in [3, 4, 5]:
            raise ValueError(f"Expecting 3-d, 4-d or 5-d pred, instead got pred of shape {pred.shape}")
        for i in range(pred.ndim - 2):
            if pred.shape[-i - 1] <= 4:
                raise ValueError(f"All spatial dimensions must be > 4, got spatial dimensions {pred.shape[2:]}")
        if pred.shape[1] != pred.ndim - 2:
            raise ValueError(
                f"Number of vector components, i.e. number of channels of the input DDF, {pred.shape[1]}, "
                f"does not match number of spatial dimensions, {pred.ndim - 2}"
            )

        # first order gradient
        first_order_gradient = [spatial_gradient(pred, dim) for dim in range(2, pred.ndim)]

        # spatial dimensions in a shape suited for broadcasting below
        if self.normalize:
            spatial_dims = torch.tensor(pred.shape, device=pred.device)[2:].reshape((1, -1) + (pred.ndim - 2) * (1,))

        energy = torch.tensor(0)
        for dim_1, g in enumerate(first_order_gradient):
            dim_1 += 2
            if self.normalize:
                g *= pred.shape[dim_1] / spatial_dims
                energy = energy + (spatial_gradient(g, dim_1) * pred.shape[dim_1]) ** 2
            else:
                energy = energy + spatial_gradient(g, dim_1) ** 2
            for dim_2 in range(dim_1 + 1, pred.ndim):
                if self.normalize:
                    energy = energy + 2 * (spatial_gradient(g, dim_2) * pred.shape[dim_2]) ** 2
                else:
                    energy = energy + 2 * spatial_gradient(g, dim_2) ** 2

        if self.reduction == LossReduction.MEAN.value:
            energy = torch.mean(energy)  # the batch and channel average
        elif self.reduction == LossReduction.SUM.value:
            energy = torch.sum(energy)  # sum over the batch and channel dims
        elif self.reduction != LossReduction.NONE.value:
            raise ValueError(f'Unsupported reduction: {self.reduction}, available options are ["mean", "sum", "none"].')

        return energy


class DiffusionLoss(_Loss):
    """
    Calculate the diffusion based on first-order differentiation of ``pred`` using central finite difference.
    For the original paper, please refer to
    VoxelMorph: A Learning Framework for Deformable Medical Image Registration,
    Guha Balakrishnan, Amy Zhao, Mert R. Sabuncu, John Guttag, Adrian V. Dalca
    IEEE TMI: Transactions on Medical Imaging. 2019. eprint arXiv:1809.05231.

    For more information,
    see https://github.com/Project-MONAI/tutorials/blob/main/modules/bending_energy_diffusion_loss_notes.ipynb.

    Adapted from:
        VoxelMorph (https://github.com/voxelmorph/voxelmorph)
    """

    def __init__(self, normalize: bool = False, reduction: LossReduction | str = LossReduction.MEAN) -> None:
        """
        Args:
            normalize:
                Whether to divide out spatial sizes in order to make the computation roughly
                invariant to image scale (i.e. vector field sampling resolution). Defaults to False.
            reduction: {``"none"``, ``"mean"``, ``"sum"``}
                Specifies the reduction to apply to the output. Defaults to ``"mean"``.

                - ``"none"``: no reduction will be applied.
                - ``"mean"``: the sum of the output will be divided by the number of elements in the output.
                - ``"sum"``: the output will be summed.
        """
        super().__init__(reduction=LossReduction(reduction).value)
        self.normalize = normalize

    def forward(self, pred: torch.Tensor) -> torch.Tensor:
        """
        Args:
            pred:
                Predicted dense displacement field (DDF) with shape BCH[WD],
                where C is the number of spatial dimensions.
                Note that diffusion loss can only be calculated
                when the sizes of the DDF along all spatial dimensions are greater than 2.

        Raises:
            ValueError: When ``self.reduction`` is not one of ["mean", "sum", "none"].
            ValueError: When ``pred`` is not 3-d, 4-d or 5-d.
            ValueError: When any spatial dimension of ``pred`` has size less than or equal to 2.
            ValueError: When the number of channels of ``pred`` does not match the number of spatial dimensions.

        """
        if pred.ndim not in [3, 4, 5]:
            raise ValueError(f"Expecting 3-d, 4-d or 5-d pred, instead got pred of shape {pred.shape}")
        for i in range(pred.ndim - 2):
            if pred.shape[-i - 1] <= 2:
                raise ValueError(f"All spatial dimensions must be > 2, got spatial dimensions {pred.shape[2:]}")
        if pred.shape[1] != pred.ndim - 2:
            raise ValueError(
                f"Number of vector components, i.e. number of channels of the input DDF, {pred.shape[1]}, "
                f"does not match number of spatial dimensions, {pred.ndim - 2}"
            )

        # first order gradient
        first_order_gradient = [spatial_gradient(pred, dim) for dim in range(2, pred.ndim)]

        # spatial dimensions in a shape suited for broadcasting below
        if self.normalize:
            spatial_dims = torch.tensor(pred.shape, device=pred.device)[2:].reshape((1, -1) + (pred.ndim - 2) * (1,))

        diffusion = torch.tensor(0)
        for dim_1, g in enumerate(first_order_gradient):
            dim_1 += 2
            if self.normalize:
                # We divide the partial derivative for each vector component at each voxel by the spatial size
                # corresponding to that component relative to the spatial size of the vector component with respect
                # to which the partial derivative is taken.
                g *= pred.shape[dim_1] / spatial_dims
            diffusion = diffusion + g**2

        if self.reduction == LossReduction.MEAN.value:
            diffusion = torch.mean(diffusion)  # the batch and channel average
        elif self.reduction == LossReduction.SUM.value:
            diffusion = torch.sum(diffusion)  # sum over the batch and channel dims
        elif self.reduction != LossReduction.NONE.value:
            raise ValueError(f'Unsupported reduction: {self.reduction}, available options are ["mean", "sum", "none"].')

        return diffusion