File size: 8,288 Bytes
853e22b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from collections.abc import Sequence
import numpy as np
import torch
__all__ = ["same_padding", "stride_minus_kernel_padding", "calculate_out_shape", "gaussian_1d", "polyval"]
def same_padding(kernel_size: Sequence[int] | int, dilation: Sequence[int] | int = 1) -> tuple[int, ...] | int:
"""
Return the padding value needed to ensure a convolution using the given kernel size produces an output of the same
shape as the input for a stride of 1, otherwise ensure a shape of the input divided by the stride rounded down.
Raises:
NotImplementedError: When ``np.any((kernel_size - 1) * dilation % 2 == 1)``.
"""
kernel_size_np = np.atleast_1d(kernel_size)
dilation_np = np.atleast_1d(dilation)
if np.any((kernel_size_np - 1) * dilation % 2 == 1):
raise NotImplementedError(
f"Same padding not available for kernel_size={kernel_size_np} and dilation={dilation_np}."
)
padding_np = (kernel_size_np - 1) / 2 * dilation_np
padding = tuple(int(p) for p in padding_np)
return padding if len(padding) > 1 else padding[0]
def stride_minus_kernel_padding(kernel_size: Sequence[int] | int, stride: Sequence[int] | int) -> tuple[int, ...] | int:
kernel_size_np = np.atleast_1d(kernel_size)
stride_np = np.atleast_1d(stride)
out_padding_np = stride_np - kernel_size_np
out_padding = tuple(int(p) for p in out_padding_np)
return out_padding if len(out_padding) > 1 else out_padding[0]
def calculate_out_shape(
in_shape: Sequence[int] | int | np.ndarray,
kernel_size: Sequence[int] | int,
stride: Sequence[int] | int,
padding: Sequence[int] | int,
) -> tuple[int, ...] | int:
"""
Calculate the output tensor shape when applying a convolution to a tensor of shape `inShape` with kernel size
`kernel_size`, stride value `stride`, and input padding value `padding`. All arguments can be scalars or multiple
values, return value is a scalar if all inputs are scalars.
"""
in_shape_np = np.atleast_1d(in_shape)
kernel_size_np = np.atleast_1d(kernel_size)
stride_np = np.atleast_1d(stride)
padding_np = np.atleast_1d(padding)
out_shape_np = ((in_shape_np - kernel_size_np + padding_np + padding_np) // stride_np) + 1
out_shape = tuple(int(s) for s in out_shape_np)
return out_shape
def gaussian_1d(
sigma: torch.Tensor, truncated: float = 4.0, approx: str = "erf", normalize: bool = False
) -> torch.Tensor:
"""
one dimensional Gaussian kernel.
Args:
sigma: std of the kernel
truncated: tail length
approx: discrete Gaussian kernel type, available options are "erf", "sampled", and "scalespace".
- ``erf`` approximation interpolates the error function;
- ``sampled`` uses a sampled Gaussian kernel;
- ``scalespace`` corresponds to
https://en.wikipedia.org/wiki/Scale_space_implementation#The_discrete_Gaussian_kernel
based on the modified Bessel functions.
normalize: whether to normalize the kernel with `kernel.sum()`.
Raises:
ValueError: When ``truncated`` is non-positive.
Returns:
1D torch tensor
"""
sigma = torch.as_tensor(sigma, dtype=torch.float, device=sigma.device if isinstance(sigma, torch.Tensor) else None)
device = sigma.device
if truncated <= 0.0:
raise ValueError(f"truncated must be positive, got {truncated}.")
tail = int(max(float(sigma) * truncated, 0.5) + 0.5)
if approx.lower() == "erf":
x = torch.arange(-tail, tail + 1, dtype=torch.float, device=device)
t = 0.70710678 / torch.abs(sigma)
out = 0.5 * ((t * (x + 0.5)).erf() - (t * (x - 0.5)).erf())
out = out.clamp(min=0)
elif approx.lower() == "sampled":
x = torch.arange(-tail, tail + 1, dtype=torch.float, device=sigma.device)
out = torch.exp(-0.5 / (sigma * sigma) * x**2)
if not normalize: # compute the normalizer
out = out / (2.5066282 * sigma)
elif approx.lower() == "scalespace":
sigma2 = sigma * sigma
out_pos: list[torch.Tensor | None] = [None] * (tail + 1)
out_pos[0] = _modified_bessel_0(sigma2)
out_pos[1] = _modified_bessel_1(sigma2)
for k in range(2, len(out_pos)):
out_pos[k] = _modified_bessel_i(k, sigma2)
out = out_pos[:0:-1]
out.extend(out_pos)
out = torch.stack(out) * torch.exp(-sigma2)
else:
raise NotImplementedError(f"Unsupported option: approx='{approx}'.")
return out / out.sum() if normalize else out # type: ignore
def polyval(coef, x) -> torch.Tensor:
"""
Evaluates the polynomial defined by `coef` at `x`.
For a 1D sequence of coef (length n), evaluate::
y = coef[n-1] + x * (coef[n-2] + ... + x * (coef[1] + x * coef[0]))
Args:
coef: a sequence of floats representing the coefficients of the polynomial
x: float or a sequence of floats representing the variable of the polynomial
Returns:
1D torch tensor
"""
device = x.device if isinstance(x, torch.Tensor) else None
coef = torch.as_tensor(coef, dtype=torch.float, device=device)
if coef.ndim == 0 or (len(coef) < 1):
return torch.zeros(x.shape)
x = torch.as_tensor(x, dtype=torch.float, device=device)
ans = coef[0]
for c in coef[1:]:
ans = ans * x + c
return ans # type: ignore
def _modified_bessel_0(x: torch.Tensor) -> torch.Tensor:
x = torch.as_tensor(x, dtype=torch.float, device=x.device if isinstance(x, torch.Tensor) else None)
if torch.abs(x) < 3.75:
y = x * x / 14.0625
return polyval([0.45813e-2, 0.360768e-1, 0.2659732, 1.2067492, 3.0899424, 3.5156229, 1.0], y)
ax = torch.abs(x)
y = 3.75 / ax
_coef = [
0.392377e-2,
-0.1647633e-1,
0.2635537e-1,
-0.2057706e-1,
0.916281e-2,
-0.157565e-2,
0.225319e-2,
0.1328592e-1,
0.39894228,
]
return polyval(_coef, y) * torch.exp(ax) / torch.sqrt(ax)
def _modified_bessel_1(x: torch.Tensor) -> torch.Tensor:
x = torch.as_tensor(x, dtype=torch.float, device=x.device if isinstance(x, torch.Tensor) else None)
if torch.abs(x) < 3.75:
y = x * x / 14.0625
_coef = [0.32411e-3, 0.301532e-2, 0.2658733e-1, 0.15084934, 0.51498869, 0.87890594, 0.5]
return torch.abs(x) * polyval(_coef, y)
ax = torch.abs(x)
y = 3.75 / ax
_coef = [
-0.420059e-2,
0.1787654e-1,
-0.2895312e-1,
0.2282967e-1,
-0.1031555e-1,
0.163801e-2,
-0.362018e-2,
-0.3988024e-1,
0.39894228,
]
ans = polyval(_coef, y) * torch.exp(ax) / torch.sqrt(ax)
return -ans if x < 0.0 else ans
def _modified_bessel_i(n: int, x: torch.Tensor) -> torch.Tensor:
if n < 2:
raise ValueError(f"n must be greater than 1, got n={n}.")
x = torch.as_tensor(x, dtype=torch.float, device=x.device if isinstance(x, torch.Tensor) else None)
if x == 0.0:
return x
device = x.device
tox = 2.0 / torch.abs(x)
ans, bip, bi = torch.tensor(0.0, device=device), torch.tensor(0.0, device=device), torch.tensor(1.0, device=device)
m = int(2 * (n + np.floor(np.sqrt(40.0 * n))))
for j in range(m, 0, -1):
bim = bip + float(j) * tox * bi
bip = bi
bi = bim
if abs(bi) > 1.0e10:
ans = ans * 1.0e-10
bi = bi * 1.0e-10
bip = bip * 1.0e-10
if j == n:
ans = bip
ans = ans * _modified_bessel_0(x) / bi
return -ans if x < 0.0 and (n % 2) == 1 else ans
|