|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
|
|
|
from monai.metrics.metric import Metric |
|
|
from monai.utils import optional_import |
|
|
|
|
|
scipy, _ = optional_import("scipy") |
|
|
|
|
|
|
|
|
class FIDMetric(Metric): |
|
|
""" |
|
|
Frechet Inception Distance (FID). The FID calculates the distance between two distributions of feature vectors. |
|
|
Based on: Heusel M. et al. "Gans trained by a two time-scale update rule converge to a local nash equilibrium." |
|
|
https://arxiv.org/abs/1706.08500. The inputs for this metric should be two groups of feature vectors (with format |
|
|
(number images, number of features)) extracted from a pretrained network. |
|
|
|
|
|
Originally, it was proposed to use the activations of the pool_3 layer of an Inception v3 pretrained with Imagenet. |
|
|
However, others networks pretrained on medical datasets can be used as well (for example, RadImageNwt for 2D and |
|
|
MedicalNet for 3D images). If the chosen model output is not a scalar, a global spatia average pooling should be |
|
|
used. |
|
|
""" |
|
|
|
|
|
def __call__(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor: |
|
|
return get_fid_score(y_pred, y) |
|
|
|
|
|
|
|
|
def get_fid_score(y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor: |
|
|
"""Computes the FID score metric on a batch of feature vectors. |
|
|
|
|
|
Args: |
|
|
y_pred: feature vectors extracted from a pretrained network run on generated images. |
|
|
y: feature vectors extracted from a pretrained network run on images from the real data distribution. |
|
|
""" |
|
|
y = y.double() |
|
|
y_pred = y_pred.double() |
|
|
|
|
|
if y.ndimension() > 2: |
|
|
raise ValueError("Inputs should have (number images, number of features) shape.") |
|
|
|
|
|
mu_y_pred = torch.mean(y_pred, dim=0) |
|
|
sigma_y_pred = _cov(y_pred, rowvar=False) |
|
|
mu_y = torch.mean(y, dim=0) |
|
|
sigma_y = _cov(y, rowvar=False) |
|
|
|
|
|
return compute_frechet_distance(mu_y_pred, sigma_y_pred, mu_y, sigma_y) |
|
|
|
|
|
|
|
|
def _cov(input_data: torch.Tensor, rowvar: bool = True) -> torch.Tensor: |
|
|
""" |
|
|
Estimate a covariance matrix of the variables. |
|
|
|
|
|
Args: |
|
|
input_data: A 1-D or 2-D array containing multiple variables and observations. Each row of `m` represents a variable, |
|
|
and each column a single observation of all those variables. |
|
|
rowvar: If rowvar is True (default), then each row represents a variable, with observations in the columns. |
|
|
Otherwise, the relationship is transposed: each column represents a variable, while the rows contain |
|
|
observations. |
|
|
""" |
|
|
if input_data.dim() < 2: |
|
|
input_data = input_data.view(1, -1) |
|
|
|
|
|
if not rowvar and input_data.size(0) != 1: |
|
|
input_data = input_data.t() |
|
|
|
|
|
factor = 1.0 / (input_data.size(1) - 1) |
|
|
input_data = input_data - torch.mean(input_data, dim=1, keepdim=True) |
|
|
return factor * input_data.matmul(input_data.t()).squeeze() |
|
|
|
|
|
|
|
|
def _sqrtm(input_data: torch.Tensor) -> torch.Tensor: |
|
|
"""Compute the square root of a matrix.""" |
|
|
scipy_res, _ = scipy.linalg.sqrtm(input_data.detach().cpu().numpy().astype(np.float_), disp=False) |
|
|
return torch.from_numpy(scipy_res) |
|
|
|
|
|
|
|
|
def compute_frechet_distance( |
|
|
mu_x: torch.Tensor, sigma_x: torch.Tensor, mu_y: torch.Tensor, sigma_y: torch.Tensor, epsilon: float = 1e-6 |
|
|
) -> torch.Tensor: |
|
|
"""The Frechet distance between multivariate normal distributions.""" |
|
|
diff = mu_x - mu_y |
|
|
|
|
|
covmean = _sqrtm(sigma_x.mm(sigma_y)) |
|
|
|
|
|
|
|
|
if not torch.isfinite(covmean).all(): |
|
|
print(f"FID calculation produces singular product; adding {epsilon} to diagonal of covariance estimates") |
|
|
offset = torch.eye(sigma_x.size(0), device=mu_x.device, dtype=mu_x.dtype) * epsilon |
|
|
covmean = _sqrtm((sigma_x + offset).mm(sigma_y + offset)) |
|
|
|
|
|
|
|
|
if torch.is_complex(covmean): |
|
|
if not torch.allclose(torch.diagonal(covmean).imag, torch.tensor(0, dtype=torch.double), atol=1e-3): |
|
|
raise ValueError(f"Imaginary component {torch.max(torch.abs(covmean.imag))} too high.") |
|
|
covmean = covmean.real |
|
|
|
|
|
tr_covmean = torch.trace(covmean) |
|
|
return diff.dot(diff) + torch.trace(sigma_x) + torch.trace(sigma_y) - 2 * tr_covmean |
|
|
|