|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
|
|
import math |
|
|
from abc import abstractmethod |
|
|
from collections.abc import Callable, Sequence |
|
|
from functools import partial |
|
|
from typing import Any |
|
|
|
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
|
|
|
from monai.metrics.utils import do_metric_reduction |
|
|
from monai.utils import MetricReduction, StrEnum, convert_data_type, ensure_tuple_rep |
|
|
from monai.utils.type_conversion import convert_to_dst_type |
|
|
|
|
|
from .metric import CumulativeIterationMetric |
|
|
|
|
|
|
|
|
class RegressionMetric(CumulativeIterationMetric): |
|
|
""" |
|
|
Base class for regression metrics. |
|
|
Input `y_pred` is compared with ground truth `y`. |
|
|
Both `y_pred` and `y` are expected to be real-valued, where `y_pred` is output from a regression model. |
|
|
`y_preds` and `y` can be a list of channel-first Tensor (CHW[D]) or a batch-first Tensor (BCHW[D]). |
|
|
|
|
|
Example of the typical execution steps of this metric class follows :py:class:`monai.metrics.metric.Cumulative`. |
|
|
|
|
|
Args: |
|
|
reduction: define mode of reduction to the metrics, will only apply reduction on `not-nan` values, |
|
|
available reduction modes: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``, |
|
|
``"mean_channel"``, ``"sum_channel"``}, default to ``"mean"``. if "none", will not do reduction. |
|
|
get_not_nans: whether to return the `not_nans` count, if True, aggregate() returns (metric, not_nans). |
|
|
Here `not_nans` count the number of not nans for the metric, thus its shape equals to the shape of the metric. |
|
|
|
|
|
""" |
|
|
|
|
|
def __init__(self, reduction: MetricReduction | str = MetricReduction.MEAN, get_not_nans: bool = False) -> None: |
|
|
super().__init__() |
|
|
self.reduction = reduction |
|
|
self.get_not_nans = get_not_nans |
|
|
|
|
|
def aggregate( |
|
|
self, reduction: MetricReduction | str | None = None |
|
|
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]: |
|
|
""" |
|
|
Args: |
|
|
reduction: define mode of reduction to the metrics, will only apply reduction on `not-nan` values, |
|
|
available reduction modes: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``, |
|
|
``"mean_channel"``, ``"sum_channel"``}, default to `self.reduction`. if "none", will not do reduction. |
|
|
""" |
|
|
data = self.get_buffer() |
|
|
if not isinstance(data, torch.Tensor): |
|
|
raise ValueError("the data to aggregate must be PyTorch Tensor.") |
|
|
|
|
|
f, not_nans = do_metric_reduction(data, reduction or self.reduction) |
|
|
return (f, not_nans) if self.get_not_nans else f |
|
|
|
|
|
def _check_shape(self, y_pred: torch.Tensor, y: torch.Tensor) -> None: |
|
|
if y_pred.shape != y.shape: |
|
|
raise ValueError(f"y_pred and y shapes dont match, received y_pred: [{y_pred.shape}] and y: [{y.shape}]") |
|
|
|
|
|
|
|
|
if len(y_pred.shape) < 2: |
|
|
raise ValueError("either channel or spatial dimensions required, found only batch dimension") |
|
|
|
|
|
@abstractmethod |
|
|
def _compute_metric(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor: |
|
|
raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") |
|
|
|
|
|
def _compute_tensor(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor: |
|
|
if not isinstance(y_pred, torch.Tensor) or not isinstance(y, torch.Tensor): |
|
|
raise ValueError("y_pred and y must be PyTorch Tensor.") |
|
|
self._check_shape(y_pred, y) |
|
|
return self._compute_metric(y_pred, y) |
|
|
|
|
|
|
|
|
class MSEMetric(RegressionMetric): |
|
|
r"""Compute Mean Squared Error between two tensors using function: |
|
|
|
|
|
.. math:: |
|
|
\operatorname {MSE}\left(Y, \hat{Y}\right) =\frac {1}{n}\sum _{i=1}^{n}\left(y_i-\hat{y_i} \right)^{2}. |
|
|
|
|
|
More info: https://en.wikipedia.org/wiki/Mean_squared_error |
|
|
|
|
|
Input `y_pred` is compared with ground truth `y`. |
|
|
Both `y_pred` and `y` are expected to be real-valued, where `y_pred` is output from a regression model. |
|
|
|
|
|
Example of the typical execution steps of this metric class follows :py:class:`monai.metrics.metric.Cumulative`. |
|
|
|
|
|
Args: |
|
|
reduction: define the mode to reduce metrics, will only execute reduction on `not-nan` values, |
|
|
available reduction modes: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``, |
|
|
``"mean_channel"``, ``"sum_channel"``}, default to ``"mean"``. if "none", will not do reduction. |
|
|
get_not_nans: whether to return the `not_nans` count, if True, aggregate() returns (metric, not_nans). |
|
|
|
|
|
""" |
|
|
|
|
|
def __init__(self, reduction: MetricReduction | str = MetricReduction.MEAN, get_not_nans: bool = False) -> None: |
|
|
super().__init__(reduction=reduction, get_not_nans=get_not_nans) |
|
|
self.sq_func = partial(torch.pow, exponent=2.0) |
|
|
|
|
|
def _compute_metric(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor: |
|
|
return compute_mean_error_metrics(y_pred, y, func=self.sq_func) |
|
|
|
|
|
|
|
|
class MAEMetric(RegressionMetric): |
|
|
r"""Compute Mean Absolute Error between two tensors using function: |
|
|
|
|
|
.. math:: |
|
|
\operatorname {MAE}\left(Y, \hat{Y}\right) =\frac {1}{n}\sum _{i=1}^{n}\left|y_i-\hat{y_i}\right|. |
|
|
|
|
|
More info: https://en.wikipedia.org/wiki/Mean_absolute_error |
|
|
|
|
|
Input `y_pred` is compared with ground truth `y`. |
|
|
Both `y_pred` and `y` are expected to be real-valued, where `y_pred` is output from a regression model. |
|
|
|
|
|
Example of the typical execution steps of this metric class follows :py:class:`monai.metrics.metric.Cumulative`. |
|
|
|
|
|
Args: |
|
|
reduction: define the mode to reduce metrics, will only execute reduction on `not-nan` values, |
|
|
available reduction modes: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``, |
|
|
``"mean_channel"``, ``"sum_channel"``}, default to ``"mean"``. if "none", will not do reduction. |
|
|
get_not_nans: whether to return the `not_nans` count, if True, aggregate() returns (metric, not_nans). |
|
|
|
|
|
""" |
|
|
|
|
|
def __init__(self, reduction: MetricReduction | str = MetricReduction.MEAN, get_not_nans: bool = False) -> None: |
|
|
super().__init__(reduction=reduction, get_not_nans=get_not_nans) |
|
|
self.abs_func = torch.abs |
|
|
|
|
|
def _compute_metric(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor: |
|
|
return compute_mean_error_metrics(y_pred, y, func=self.abs_func) |
|
|
|
|
|
|
|
|
class RMSEMetric(RegressionMetric): |
|
|
r"""Compute Root Mean Squared Error between two tensors using function: |
|
|
|
|
|
.. math:: |
|
|
\operatorname {RMSE}\left(Y, \hat{Y}\right) ={ \sqrt{ \frac {1}{n}\sum _{i=1}^{n}\left(y_i-\hat{y_i}\right)^2 } } \ |
|
|
= \sqrt {\operatorname{MSE}\left(Y, \hat{Y}\right)}. |
|
|
|
|
|
More info: https://en.wikipedia.org/wiki/Root-mean-square_deviation |
|
|
|
|
|
Input `y_pred` is compared with ground truth `y`. |
|
|
Both `y_pred` and `y` are expected to be real-valued, where `y_pred` is output from a regression model. |
|
|
|
|
|
Example of the typical execution steps of this metric class follows :py:class:`monai.metrics.metric.Cumulative`. |
|
|
|
|
|
Args: |
|
|
reduction: define the mode to reduce metrics, will only execute reduction on `not-nan` values, |
|
|
available reduction modes: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``, |
|
|
``"mean_channel"``, ``"sum_channel"``}, default to ``"mean"``. if "none", will not do reduction. |
|
|
get_not_nans: whether to return the `not_nans` count, if True, aggregate() returns (metric, not_nans). |
|
|
|
|
|
""" |
|
|
|
|
|
def __init__(self, reduction: MetricReduction | str = MetricReduction.MEAN, get_not_nans: bool = False) -> None: |
|
|
super().__init__(reduction=reduction, get_not_nans=get_not_nans) |
|
|
self.sq_func = partial(torch.pow, exponent=2.0) |
|
|
|
|
|
def _compute_metric(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor: |
|
|
mse_out = compute_mean_error_metrics(y_pred, y, func=self.sq_func) |
|
|
return torch.sqrt(mse_out) |
|
|
|
|
|
|
|
|
class PSNRMetric(RegressionMetric): |
|
|
r"""Compute Peak Signal To Noise Ratio between two tensors using function: |
|
|
|
|
|
.. math:: |
|
|
\operatorname{PSNR}\left(Y, \hat{Y}\right) = 20 \cdot \log_{10} \left({\mathit{MAX}}_Y\right) \ |
|
|
-10 \cdot \log_{10}\left(\operatorname{MSE\left(Y, \hat{Y}\right)}\right) |
|
|
|
|
|
More info: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio |
|
|
|
|
|
Help taken from: |
|
|
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/image_ops_impl.py line 4139 |
|
|
|
|
|
Input `y_pred` is compared with ground truth `y`. |
|
|
Both `y_pred` and `y` are expected to be real-valued, where `y_pred` is output from a regression model. |
|
|
|
|
|
Example of the typical execution steps of this metric class follows :py:class:`monai.metrics.metric.Cumulative`. |
|
|
|
|
|
Args: |
|
|
max_val: The dynamic range of the images/volumes (i.e., the difference between the |
|
|
maximum and the minimum allowed values e.g. 255 for a uint8 image). |
|
|
reduction: define the mode to reduce metrics, will only execute reduction on `not-nan` values, |
|
|
available reduction modes: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``, |
|
|
``"mean_channel"``, ``"sum_channel"``}, default to ``"mean"``. if "none", will not do reduction. |
|
|
get_not_nans: whether to return the `not_nans` count, if True, aggregate() returns (metric, not_nans). |
|
|
|
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, max_val: int | float, reduction: MetricReduction | str = MetricReduction.MEAN, get_not_nans: bool = False |
|
|
) -> None: |
|
|
super().__init__(reduction=reduction, get_not_nans=get_not_nans) |
|
|
self.max_val = max_val |
|
|
self.sq_func = partial(torch.pow, exponent=2.0) |
|
|
|
|
|
def _compute_metric(self, y_pred: torch.Tensor, y: torch.Tensor) -> Any: |
|
|
mse_out = compute_mean_error_metrics(y_pred, y, func=self.sq_func) |
|
|
return 20 * math.log10(self.max_val) - 10 * torch.log10(mse_out) |
|
|
|
|
|
|
|
|
def compute_mean_error_metrics(y_pred: torch.Tensor, y: torch.Tensor, func: Callable) -> torch.Tensor: |
|
|
|
|
|
|
|
|
flt = partial(torch.flatten, start_dim=1) |
|
|
return torch.mean(flt(func(y - y_pred)), dim=-1, keepdim=True) |
|
|
|
|
|
|
|
|
class KernelType(StrEnum): |
|
|
GAUSSIAN = "gaussian" |
|
|
UNIFORM = "uniform" |
|
|
|
|
|
|
|
|
class SSIMMetric(RegressionMetric): |
|
|
r""" |
|
|
Computes the Structural Similarity Index Measure (SSIM). |
|
|
|
|
|
.. math:: |
|
|
\operatorname {SSIM}(x,y) =\frac {(2 \mu_x \mu_y + c_1)(2 \sigma_{xy} + c_2)}{((\mu_x^2 + \ |
|
|
\mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)} |
|
|
|
|
|
For more info, visit |
|
|
https://vicuesoft.com/glossary/term/ssim-ms-ssim/ |
|
|
|
|
|
SSIM reference paper: |
|
|
Wang, Zhou, et al. "Image quality assessment: from error visibility to structural |
|
|
similarity." IEEE transactions on image processing 13.4 (2004): 600-612. |
|
|
|
|
|
Args: |
|
|
spatial_dims: number of spatial dimensions of the input images. |
|
|
data_range: value range of input images. (usually 1.0 or 255) |
|
|
kernel_type: type of kernel, can be "gaussian" or "uniform". |
|
|
win_size: window size of kernel |
|
|
kernel_sigma: standard deviation for Gaussian kernel. |
|
|
k1: stability constant used in the luminance denominator |
|
|
k2: stability constant used in the contrast denominator |
|
|
reduction: define the mode to reduce metrics, will only execute reduction on `not-nan` values, |
|
|
available reduction modes: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``, |
|
|
``"mean_channel"``, ``"sum_channel"``}, default to ``"mean"``. if "none", will not do reduction |
|
|
get_not_nans: whether to return the `not_nans` count, if True, aggregate() returns (metric, not_nans) |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
spatial_dims: int, |
|
|
data_range: float = 1.0, |
|
|
kernel_type: KernelType | str = KernelType.GAUSSIAN, |
|
|
win_size: int | Sequence[int] = 11, |
|
|
kernel_sigma: float | Sequence[float] = 1.5, |
|
|
k1: float = 0.01, |
|
|
k2: float = 0.03, |
|
|
reduction: MetricReduction | str = MetricReduction.MEAN, |
|
|
get_not_nans: bool = False, |
|
|
) -> None: |
|
|
super().__init__(reduction=reduction, get_not_nans=get_not_nans) |
|
|
|
|
|
self.spatial_dims = spatial_dims |
|
|
self.data_range = data_range |
|
|
self.kernel_type = kernel_type |
|
|
|
|
|
if not isinstance(win_size, Sequence): |
|
|
win_size = ensure_tuple_rep(win_size, spatial_dims) |
|
|
self.kernel_size = win_size |
|
|
|
|
|
if not isinstance(kernel_sigma, Sequence): |
|
|
kernel_sigma = ensure_tuple_rep(kernel_sigma, spatial_dims) |
|
|
self.kernel_sigma = kernel_sigma |
|
|
|
|
|
self.k1 = k1 |
|
|
self.k2 = k2 |
|
|
|
|
|
def _compute_metric(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor: |
|
|
""" |
|
|
Args: |
|
|
y_pred: Predicted image. |
|
|
It must be a 2D or 3D batch-first tensor [B,C,H,W] or [B,C,H,W,D]. |
|
|
y: Reference image. |
|
|
It must be a 2D or 3D batch-first tensor [B,C,H,W] or [B,C,H,W,D]. |
|
|
|
|
|
Raises: |
|
|
ValueError: when `y_pred` is not a 2D or 3D image. |
|
|
""" |
|
|
dims = y_pred.ndimension() |
|
|
if self.spatial_dims == 2 and dims != 4: |
|
|
raise ValueError( |
|
|
f"y_pred should have 4 dimensions (batch, channel, height, width) when using {self.spatial_dims} " |
|
|
f"spatial dimensions, got {dims}." |
|
|
) |
|
|
|
|
|
if self.spatial_dims == 3 and dims != 5: |
|
|
raise ValueError( |
|
|
f"y_pred should have 5 dimensions (batch, channel, height, width, depth) when using {self.spatial_dims}" |
|
|
f" spatial dimensions, got {dims}." |
|
|
) |
|
|
|
|
|
ssim_value_full_image, _ = compute_ssim_and_cs( |
|
|
y_pred=y_pred, |
|
|
y=y, |
|
|
spatial_dims=self.spatial_dims, |
|
|
data_range=self.data_range, |
|
|
kernel_type=self.kernel_type, |
|
|
kernel_size=self.kernel_size, |
|
|
kernel_sigma=self.kernel_sigma, |
|
|
k1=self.k1, |
|
|
k2=self.k2, |
|
|
) |
|
|
|
|
|
ssim_per_batch: torch.Tensor = ssim_value_full_image.view(ssim_value_full_image.shape[0], -1).mean( |
|
|
1, keepdim=True |
|
|
) |
|
|
|
|
|
return ssim_per_batch |
|
|
|
|
|
|
|
|
def _gaussian_kernel( |
|
|
spatial_dims: int, num_channels: int, kernel_size: Sequence[int], kernel_sigma: Sequence[float] |
|
|
) -> torch.Tensor: |
|
|
"""Computes 2D or 3D gaussian kernel. |
|
|
|
|
|
Args: |
|
|
spatial_dims: number of spatial dimensions of the input images. |
|
|
num_channels: number of channels in the image |
|
|
kernel_size: size of kernel |
|
|
kernel_sigma: standard deviation for Gaussian kernel. |
|
|
""" |
|
|
|
|
|
def gaussian_1d(kernel_size: int, sigma: float) -> torch.Tensor: |
|
|
"""Computes 1D gaussian kernel. |
|
|
|
|
|
Args: |
|
|
kernel_size: size of the gaussian kernel |
|
|
sigma: Standard deviation of the gaussian kernel |
|
|
""" |
|
|
dist = torch.arange(start=(1 - kernel_size) / 2, end=(1 + kernel_size) / 2, step=1) |
|
|
gauss = torch.exp(-torch.pow(dist / sigma, 2) / 2) |
|
|
return (gauss / gauss.sum()).unsqueeze(dim=0) |
|
|
|
|
|
gaussian_kernel_x = gaussian_1d(kernel_size[0], kernel_sigma[0]) |
|
|
gaussian_kernel_y = gaussian_1d(kernel_size[1], kernel_sigma[1]) |
|
|
kernel = torch.matmul(gaussian_kernel_x.t(), gaussian_kernel_y) |
|
|
|
|
|
kernel_dimensions: tuple[int, ...] = (num_channels, 1, kernel_size[0], kernel_size[1]) |
|
|
|
|
|
if spatial_dims == 3: |
|
|
gaussian_kernel_z = gaussian_1d(kernel_size[2], kernel_sigma[2])[None,] |
|
|
kernel = torch.mul( |
|
|
kernel.unsqueeze(-1).repeat(1, 1, kernel_size[2]), |
|
|
gaussian_kernel_z.expand(kernel_size[0], kernel_size[1], kernel_size[2]), |
|
|
) |
|
|
kernel_dimensions = (num_channels, 1, kernel_size[0], kernel_size[1], kernel_size[2]) |
|
|
|
|
|
return kernel.expand(kernel_dimensions) |
|
|
|
|
|
|
|
|
def compute_ssim_and_cs( |
|
|
y_pred: torch.Tensor, |
|
|
y: torch.Tensor, |
|
|
spatial_dims: int, |
|
|
kernel_size: Sequence[int], |
|
|
kernel_sigma: Sequence[float], |
|
|
data_range: float = 1.0, |
|
|
kernel_type: KernelType | str = KernelType.GAUSSIAN, |
|
|
k1: float = 0.01, |
|
|
k2: float = 0.03, |
|
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
|
""" |
|
|
Function to compute the Structural Similarity Index Measure (SSIM) and Contrast Sensitivity (CS) for a batch |
|
|
of images. |
|
|
|
|
|
Args: |
|
|
y_pred: batch of predicted images with shape (batch_size, channels, spatial_dim1, spatial_dim2[, spatial_dim3]) |
|
|
y: batch of target images with shape (batch_size, channels, spatial_dim1, spatial_dim2[, spatial_dim3]) |
|
|
kernel_size: the size of the kernel to use for the SSIM computation. |
|
|
kernel_sigma: the standard deviation of the kernel to use for the SSIM computation. |
|
|
spatial_dims: number of spatial dimensions of the images (2, 3) |
|
|
data_range: the data range of the images. |
|
|
kernel_type: the type of kernel to use for the SSIM computation. Can be either "gaussian" or "uniform". |
|
|
k1: the first stability constant. |
|
|
k2: the second stability constant. |
|
|
|
|
|
Returns: |
|
|
ssim: the Structural Similarity Index Measure score for the batch of images. |
|
|
cs: the Contrast Sensitivity for the batch of images. |
|
|
""" |
|
|
if y.shape != y_pred.shape: |
|
|
raise ValueError(f"y_pred and y should have same shapes, got {y_pred.shape} and {y.shape}.") |
|
|
|
|
|
y_pred = convert_data_type(y_pred, output_type=torch.Tensor, dtype=torch.float)[0] |
|
|
y = convert_data_type(y, output_type=torch.Tensor, dtype=torch.float)[0] |
|
|
|
|
|
num_channels = y_pred.size(1) |
|
|
|
|
|
if kernel_type == KernelType.GAUSSIAN: |
|
|
kernel = _gaussian_kernel(spatial_dims, num_channels, kernel_size, kernel_sigma) |
|
|
elif kernel_type == KernelType.UNIFORM: |
|
|
kernel = torch.ones((num_channels, 1, *kernel_size)) / torch.prod(torch.tensor(kernel_size)) |
|
|
|
|
|
kernel = convert_to_dst_type(src=kernel, dst=y_pred)[0] |
|
|
|
|
|
c1 = (k1 * data_range) ** 2 |
|
|
c2 = (k2 * data_range) ** 2 |
|
|
|
|
|
conv_fn = getattr(F, f"conv{spatial_dims}d") |
|
|
mu_x = conv_fn(y_pred, kernel, groups=num_channels) |
|
|
mu_y = conv_fn(y, kernel, groups=num_channels) |
|
|
mu_xx = conv_fn(y_pred * y_pred, kernel, groups=num_channels) |
|
|
mu_yy = conv_fn(y * y, kernel, groups=num_channels) |
|
|
mu_xy = conv_fn(y_pred * y, kernel, groups=num_channels) |
|
|
|
|
|
sigma_x = mu_xx - mu_x * mu_x |
|
|
sigma_y = mu_yy - mu_y * mu_y |
|
|
sigma_xy = mu_xy - mu_x * mu_y |
|
|
|
|
|
contrast_sensitivity = (2 * sigma_xy + c2) / (sigma_x + sigma_y + c2) |
|
|
ssim_value_full_image = ((2 * mu_x * mu_y + c1) / (mu_x**2 + mu_y**2 + c1)) * contrast_sensitivity |
|
|
|
|
|
return ssim_value_full_image, contrast_sensitivity |
|
|
|
|
|
|
|
|
class MultiScaleSSIMMetric(RegressionMetric): |
|
|
""" |
|
|
Computes the Multi-Scale Structural Similarity Index Measure (MS-SSIM). |
|
|
|
|
|
MS-SSIM reference paper: |
|
|
Wang, Z., Simoncelli, E.P. and Bovik, A.C., 2003, November. "Multiscale structural |
|
|
similarity for image quality assessment." In The Thirty-Seventh Asilomar Conference |
|
|
on Signals, Systems & Computers, 2003 (Vol. 2, pp. 1398-1402). IEEE |
|
|
|
|
|
Args: |
|
|
spatial_dims: number of spatial dimensions of the input images. |
|
|
data_range: value range of input images. (usually 1.0 or 255) |
|
|
kernel_type: type of kernel, can be "gaussian" or "uniform". |
|
|
kernel_size: size of kernel |
|
|
kernel_sigma: standard deviation for Gaussian kernel. |
|
|
k1: stability constant used in the luminance denominator |
|
|
k2: stability constant used in the contrast denominator |
|
|
weights: parameters for image similarity and contrast sensitivity at different resolution scores. |
|
|
reduction: define the mode to reduce metrics, will only execute reduction on `not-nan` values, |
|
|
available reduction modes: {``"none"``, ``"mean"``, ``"sum"``, ``"mean_batch"``, ``"sum_batch"``, |
|
|
``"mean_channel"``, ``"sum_channel"``}, default to ``"mean"``. if "none", will not do reduction |
|
|
get_not_nans: whether to return the `not_nans` count, if True, aggregate() returns (metric, not_nans) |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
spatial_dims: int, |
|
|
data_range: float = 1.0, |
|
|
kernel_type: KernelType | str = KernelType.GAUSSIAN, |
|
|
kernel_size: int | Sequence[int] = 11, |
|
|
kernel_sigma: float | Sequence[float] = 1.5, |
|
|
k1: float = 0.01, |
|
|
k2: float = 0.03, |
|
|
weights: Sequence[float] = (0.0448, 0.2856, 0.3001, 0.2363, 0.1333), |
|
|
reduction: MetricReduction | str = MetricReduction.MEAN, |
|
|
get_not_nans: bool = False, |
|
|
) -> None: |
|
|
super().__init__(reduction=reduction, get_not_nans=get_not_nans) |
|
|
|
|
|
self.spatial_dims = spatial_dims |
|
|
self.data_range = data_range |
|
|
self.kernel_type = kernel_type |
|
|
|
|
|
if not isinstance(kernel_size, Sequence): |
|
|
kernel_size = ensure_tuple_rep(kernel_size, spatial_dims) |
|
|
self.kernel_size = kernel_size |
|
|
|
|
|
if not isinstance(kernel_sigma, Sequence): |
|
|
kernel_sigma = ensure_tuple_rep(kernel_sigma, spatial_dims) |
|
|
self.kernel_sigma = kernel_sigma |
|
|
|
|
|
self.k1 = k1 |
|
|
self.k2 = k2 |
|
|
self.weights = weights |
|
|
|
|
|
def _compute_metric(self, y_pred: torch.Tensor, y: torch.Tensor) -> torch.Tensor: |
|
|
return compute_ms_ssim( |
|
|
y_pred=y_pred, |
|
|
y=y, |
|
|
spatial_dims=self.spatial_dims, |
|
|
data_range=self.data_range, |
|
|
kernel_type=self.kernel_type, |
|
|
kernel_size=self.kernel_size, |
|
|
kernel_sigma=self.kernel_sigma, |
|
|
k1=self.k1, |
|
|
k2=self.k2, |
|
|
weights=self.weights, |
|
|
) |
|
|
|
|
|
|
|
|
def compute_ms_ssim( |
|
|
y_pred: torch.Tensor, |
|
|
y: torch.Tensor, |
|
|
spatial_dims: int, |
|
|
data_range: float = 1.0, |
|
|
kernel_type: KernelType | str = KernelType.GAUSSIAN, |
|
|
kernel_size: int | Sequence[int] = 11, |
|
|
kernel_sigma: float | Sequence[float] = 1.5, |
|
|
k1: float = 0.01, |
|
|
k2: float = 0.03, |
|
|
weights: Sequence[float] = (0.0448, 0.2856, 0.3001, 0.2363, 0.1333), |
|
|
) -> torch.Tensor: |
|
|
""" |
|
|
Args: |
|
|
y_pred: Predicted image. |
|
|
It must be a 2D or 3D batch-first tensor [B,C,H,W] or [B,C,H,W,D]. |
|
|
y: Reference image. |
|
|
It must be a 2D or 3D batch-first tensor [B,C,H,W] or [B,C,H,W,D]. |
|
|
spatial_dims: number of spatial dimensions of the input images. |
|
|
data_range: value range of input images. (usually 1.0 or 255) |
|
|
kernel_type: type of kernel, can be "gaussian" or "uniform". |
|
|
kernel_size: size of kernel |
|
|
kernel_sigma: standard deviation for Gaussian kernel. |
|
|
k1: stability constant used in the luminance denominator |
|
|
k2: stability constant used in the contrast denominator |
|
|
weights: parameters for image similarity and contrast sensitivity at different resolution scores. |
|
|
Raises: |
|
|
ValueError: when `y_pred` is not a 2D or 3D image. |
|
|
""" |
|
|
dims = y_pred.ndimension() |
|
|
if spatial_dims == 2 and dims != 4: |
|
|
raise ValueError( |
|
|
f"y_pred should have 4 dimensions (batch, channel, height, width) when using {spatial_dims} " |
|
|
f"spatial dimensions, got {dims}." |
|
|
) |
|
|
|
|
|
if spatial_dims == 3 and dims != 5: |
|
|
raise ValueError( |
|
|
f"y_pred should have 4 dimensions (batch, channel, height, width, depth) when using {spatial_dims}" |
|
|
f" spatial dimensions, got {dims}." |
|
|
) |
|
|
|
|
|
if not isinstance(kernel_size, Sequence): |
|
|
kernel_size = ensure_tuple_rep(kernel_size, spatial_dims) |
|
|
|
|
|
if not isinstance(kernel_sigma, Sequence): |
|
|
kernel_sigma = ensure_tuple_rep(kernel_sigma, spatial_dims) |
|
|
|
|
|
weights_div = max(1, (len(weights) - 1)) ** 2 |
|
|
y_pred_spatial_dims = y_pred.shape[2:] |
|
|
for i in range(len(y_pred_spatial_dims)): |
|
|
if y_pred_spatial_dims[i] // weights_div <= kernel_size[i] - 1: |
|
|
raise ValueError( |
|
|
f"For a given number of `weights` parameters {len(weights)} and kernel size " |
|
|
f"{kernel_size[i]}, the image height must be larger than " |
|
|
f"{(kernel_size[i] - 1) * weights_div}." |
|
|
) |
|
|
|
|
|
weights_tensor = torch.tensor(weights, device=y_pred.device, dtype=torch.float) |
|
|
|
|
|
avg_pool = getattr(F, f"avg_pool{spatial_dims}d") |
|
|
|
|
|
multiscale_list: list[torch.Tensor] = [] |
|
|
for _ in range(len(weights_tensor)): |
|
|
ssim, cs = compute_ssim_and_cs( |
|
|
y_pred=y_pred, |
|
|
y=y, |
|
|
spatial_dims=spatial_dims, |
|
|
data_range=data_range, |
|
|
kernel_type=kernel_type, |
|
|
kernel_size=kernel_size, |
|
|
kernel_sigma=kernel_sigma, |
|
|
k1=k1, |
|
|
k2=k2, |
|
|
) |
|
|
|
|
|
cs_per_batch = cs.view(cs.shape[0], -1).mean(1) |
|
|
|
|
|
multiscale_list.append(torch.relu(cs_per_batch)) |
|
|
y_pred = avg_pool(y_pred, kernel_size=2) |
|
|
y = avg_pool(y, kernel_size=2) |
|
|
|
|
|
ssim = ssim.view(ssim.shape[0], -1).mean(1) |
|
|
multiscale_list[-1] = torch.relu(ssim) |
|
|
multiscale_list_tensor = torch.stack(multiscale_list) |
|
|
|
|
|
ms_ssim_value_full_image = torch.prod(multiscale_list_tensor ** weights_tensor.view(-1, 1), dim=0) |
|
|
|
|
|
ms_ssim_per_batch: torch.Tensor = ms_ssim_value_full_image.view(ms_ssim_value_full_image.shape[0], -1).mean( |
|
|
1, keepdim=True |
|
|
) |
|
|
|
|
|
return ms_ssim_per_batch |
|
|
|