titans_NPC / titans_pytorch /neural_memory.py
ChipYTY's picture
Add v4 Qwen3+Titans code snapshot and README
a517ecd verified
from __future__ import annotations
from typing import Callable
import math
from functools import partial
from itertools import zip_longest
from collections import namedtuple
import torch
from torch import nn, stack, cat, is_tensor, tensor, Tensor
import torch.nn.functional as F
from torch.nn import Linear, Module, Parameter, ParameterList, ParameterDict
from torch.func import functional_call, vmap, grad
from torch.utils._pytree import tree_map, tree_flatten, tree_unflatten
from tensordict import TensorDict
from assoc_scan import AssocScan
from titans_pytorch.memory_models import(
MemoryMLP,
ResidualNorm
)
import einx
from einops import einsum, rearrange, repeat, reduce, pack, unpack
from einops.layers.torch import Rearrange, Reduce
"""
ein notation:
b - batch
h - heads
bh - batch and heads
n - sequence
d - feature dimension
c - intra-chunk
w - num memory network weight parameters
o - momentum orders
u - key / value updates - allowing a token to emit multiple key / values
"""
LinearNoBias = partial(Linear, bias = False)
# neural mem state related
NeuralMemState = namedtuple('NeuralMemState', [
'seq_index',
'weights',
'cache_store_segment',
'states',
'updates',
])
def mem_state_detach(
state: NeuralMemState
):
assert isinstance(state, NeuralMemState)
state = tree_map(lambda t: t.detach() if is_tensor(t) else t, tuple(state))
return NeuralMemState(*state)
# functions
def exists(v):
return v is not None
def default(*args):
for arg in args:
if exists(arg):
return arg
return None
def identity(t):
return t
def xnor(x, y):
return not (x ^ y)
def divisible_by(num, den):
return (num % den) == 0
def safe_cat(inputs, dim = -2):
inputs = tuple(filter(exists, inputs))
if len(inputs) == 0:
return None
elif len(inputs) == 1:
return inputs[0]
return cat(inputs, dim = dim)
def is_empty_tensor(t):
return t.numel() == 0
def dict_get_value_shapes(td):
return [v.shape for k, v in td.items()]
def rearrange_dict_values(td, pattern, **kwargs):
return td.apply(lambda t: rearrange(t, pattern, **kwargs))
def repeat_dict_values(td, pattern, **kwargs):
return td.apply(lambda t: repeat(t, pattern, **kwargs))
def pair(v):
return (v, v) if not isinstance(v, tuple) else v
def round_down_multiple(seq, mult):
return seq // mult * mult
def round_up_multiple(seq, mult):
return math.ceil(seq / mult) * mult
def pad_at_dim(t, pad, dim = -1, value = 0.):
dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1)
zeros = ((0, 0) * dims_from_right)
return F.pad(t, (*zeros, *pad), value = value)
def pack_one_with_inverse(t, pattern):
packed, packed_shape = pack([t], pattern)
def inverse(out, inv_pattern = None):
inv_pattern = default(inv_pattern, pattern)
return unpack(out, packed_shape, inv_pattern)[0]
return packed, inverse
def Sequential(*modules):
modules = [*filter(exists, modules)]
if len(modules) == 0:
return nn.Identity()
if len(modules) == 1:
return modules[0]
return nn.Sequential(*modules)
# softclamping gradients
def softclamp_max(t, max_value):
half_max_value = max_value / 2
return ((t / half_max_value).tanh() * half_max_value) + half_max_value
def softclamp_grad_norm(t, max_value, eps: float = 1e-6):
if is_empty_tensor(t):
return t
t, inverse = pack_one_with_inverse(t, 'bn *')
norm = t.norm(dim = -1, keepdim = True).clamp(min = eps)
clamped_norm = softclamp_max(norm, max_value)
t = t * (clamped_norm / norm)
return inverse(t)
# spectral norming the surprise update w/ newton schulz matrix iter
# Keller Jordan et al. from OSS w/ nanogpt, now being used for two works, Atlas and 'TTT done right'
def newtonschulz5(
t,
steps = 5,
eps = 1e-7,
coefs = (3.4445, -4.7750, 2.0315)
):
if t.ndim <= 3:
return t
shape = t.shape
should_transpose = shape[-2] > shape[-1]
if should_transpose:
t = t.transpose(-1, -2)
t, inv_pack = pack_one_with_inverse(t, '* i j')
t = t / t.norm(dim = (-1, -2), keepdim = True).clamp(min = eps)
a, b, c = coefs
for _ in range(steps):
A = t @ t.transpose(-1, -2)
B = b * A + c * A @ A
t = a * t + B @ t
if should_transpose:
t = t.transpose(-1, -2)
return inv_pack(t)
# multi head rmsnorm
class MultiheadRMSNorm(Module):
def __init__(self, dim, heads):
super().__init__()
self.rmsnorm = nn.RMSNorm(dim, elementwise_affine = False)
self.gamma = Parameter(torch.zeros(heads, 1, dim))
def forward(self, x):
return self.rmsnorm(x) * (self.gamma + 1.)
# chunk pooling
class AveragePool(Module):
def __init__(
self,
chunk_size
):
super().__init__()
self.chunk_size = chunk_size
def forward(
self,
x,
chunk_size = None
):
chunk_size = default(chunk_size, self.chunk_size)
return reduce(x, 'b (n c) d -> b n d', 'mean', c = chunk_size)
class AttentionPool(Module):
def __init__(
self,
dim,
chunk_size
):
"""
taken from Enformer https://www.nature.com/articles/s41592-021-01252-x , in turn taken from somewhere else
"""
super().__init__()
self.chunk_size = chunk_size
self.to_attn_logits = nn.Linear(dim, dim)
# default to average pool
nn.init.zeros_(self.to_attn_logits.weight)
nn.init.zeros_(self.to_attn_logits.bias)
def forward(
self,
x,
chunk_size = None
):
chunk_size = default(chunk_size, self.chunk_size)
x = rearrange(x, 'b (n c) d -> b n c d', c = chunk_size)
attn_logits = self.to_attn_logits(x)
attn = attn_logits.softmax(dim = -2)
return reduce(x * attn, 'b n c d -> b n d', 'sum')
# main neural memory
def default_adaptive_step_transform(adaptive_step, max_lr = 1e-2):
return adaptive_step.sigmoid() * max_lr
def default_loss_fn(pred, target):
return (pred - target).pow(2).mean(dim = -1)
class NeuralMemory(Module):
def __init__(
self,
dim,
chunk_size: int | tuple[int, int] = 1,
batch_size = None,
dim_head = None,
heads = 1,
model: Module | None = None,
store_memory_loss_fn: Callable = default_loss_fn,
adaptive_step_transform: Callable | None = None,
default_step_transform_max_lr = 1.,
per_parameter_lr_modulation = False, # allow outer network to control learning rate per weight matrix of memory network
max_mem_layer_modulation = 1., # max of 10.
per_head_learned_parameters = True,
attn_pool_chunks = False,
momentum = True,
momentum_order = 1,
learned_momentum_combine = False,
learned_combine_include_zeroth = False,
num_kv_per_token = 1, # whether a single token can do multiple updates to the memory model
qkv_receives_diff_views = False, # to address an issue raised by a phd student (who will be credited if experiments are green). basically the issue raised is that the memory MLP is only learning Wk @ Wv linear mapping and that may not be expressive enough. we will use hyper connections to allow the network to choose different previous layer inputs as keys / values and see if that does anything
pre_rmsnorm = True,
post_rmsnorm = False,
qk_rmsnorm = False,
max_grad_norm: float | None = None,
use_accelerated_scan = False,
activation: Module | None = None,
init_adaptive_step_bias = None,
init_momentum_bias = None,
init_decay_bias = None,
accept_weight_residual = False,
spectral_norm_surprises = False,
gated_transition = False,
mem_model_norm_add_residual = True, # by default, layernorm output and add residual as proposed in TTT paper, but could be removed
default_model_kwargs: dict = dict(
depth = 2,
expansion_factor = 4.
)
):
super().__init__()
dim_head = default(dim_head, dim)
assert not (heads == 1 and dim_head != dim)
self.retrieve_chunk_size, self.store_chunk_size = pair(chunk_size)
# batch size
if exists(batch_size):
assert divisible_by(batch_size, self.store_chunk_size)
self.batch_size = batch_size
# associative scan
self.assoc_scan = AssocScan(use_accelerated = use_accelerated_scan)
# key values receiving different views
self.qkv_receives_diff_views = qkv_receives_diff_views
# norms
self.retrieve_norm = nn.RMSNorm(dim) if pre_rmsnorm else nn.Identity()
self.store_norm = nn.RMSNorm(dim) if pre_rmsnorm else nn.Identity()
self.multihead_rmsnorm = MultiheadRMSNorm(dim_head, heads) if post_rmsnorm else nn.Identity()
self.q_norm = MultiheadRMSNorm(dim_head, heads) if qk_rmsnorm else nn.Identity()
self.k_norm = MultiheadRMSNorm(dim_head, heads) if qk_rmsnorm else nn.Identity()
# maybe multi-headed
dim_inner = dim_head * heads
self.heads = heads
self.split_heads = Rearrange('b n (h d) -> b h n d', h = heads)
self.split_kv_heads = Rearrange('b n (h u d) -> b h (n u) d', h = heads, u = num_kv_per_token)
self.merge_heads = Rearrange('b h n d -> b n (h d)')
self.combine_heads = LinearNoBias(dim_inner, dim) if heads > 1 else nn.Identity()
self.retrieve_gate = Sequential(
LinearNoBias(dim, heads),
Rearrange('b n h -> b h n 1'),
nn.Sigmoid()
) if heads > 1 else None
# memory model
if not exists(model):
model = MemoryMLP(dim_head, **default_model_kwargs)
# validate memory model
assert not exists(next(model.buffers(), None)), 'model cannot have buffers for now'
test_shape = (3, 2, dim_head)
with torch.no_grad():
try:
test_input = torch.randn(test_shape)
mem_model_output = model(test_input)
except:
raise RuntimeError(f'memory model unable to accept a tensor of shape {test_shape}')
assert mem_model_output.shape == test_shape, 'output of memory model needs to be same shape as input'
# the memory is the weights of the model
if mem_model_norm_add_residual:
model = ResidualNorm(dim = dim_head, model = model)
self.memory_model = model
mem_model_params = dict(model.named_parameters())
self.num_memory_parameter_tensors = len(mem_model_params)
self.memory_model_parameter_names = [*mem_model_params.keys()]
memory_model_parameters = [*mem_model_params.values()]
if per_head_learned_parameters:
memory_model_parameters = [repeat(p, '... -> h ...', h = heads) for p in memory_model_parameters]
self.init_weight_shape = [p.shape for p in memory_model_parameters]
self.memory_model_parameters = ParameterList(memory_model_parameters)
self.per_head_learned_parameters = per_head_learned_parameters
# the chunk size within the paper where adaptive step, momentum, weight decay are shared
self.chunk_size = chunk_size
# prepare function for per sample gradients from model above, using torch.func
def forward_and_loss(params, inputs, loss_weights, target):
pred = functional_call(self.memory_model, params, inputs)
loss = self.store_memory_loss_fn(pred, target) # simple mse loss in paper - eq (12) - |M(k) - v|²
weighted_loss = loss * loss_weights
return weighted_loss.sum(), loss
# two functions
grad_fn = grad(forward_and_loss, has_aux = True)
self.per_sample_grad_fn = vmap(grad_fn, in_dims = (0, 0, 0, 0))
# queries for retrieving from the model
self.to_queries = Sequential(LinearNoBias(dim, dim_inner), activation)
# keys and values for storing to the model
assert num_kv_per_token > 0
self.to_keys = Sequential(
LinearNoBias(dim, dim_inner * num_kv_per_token),
activation,
)
self.to_values = Sequential(
LinearNoBias(dim, dim_inner * num_kv_per_token),
activation,
)
self.store_memory_loss_fn = store_memory_loss_fn
self.num_kv_per_token = num_kv_per_token
# `chunk_size` refers to chunk size used for storing to memory model weights
chunk_size = self.store_chunk_size
# whether to use averaging of chunks, or attention pooling
assert not (attn_pool_chunks and chunk_size == 1), '`attn_pool_chunks` cannot be set to True if `chunk_size` is set to 1'
if not attn_pool_chunks:
self.reduce_to_chunk_rep = AveragePool(chunk_size = chunk_size)
else:
self.reduce_to_chunk_rep = AttentionPool(dim, chunk_size = chunk_size)
# learned adaptive learning rate
self.to_adaptive_step = Sequential(
nn.Linear(dim, heads * num_kv_per_token),
Rearrange('b n (h u) -> (b h) (n u)', u = num_kv_per_token)
)
if not exists(adaptive_step_transform):
adaptive_step_transform = partial(default_adaptive_step_transform, max_lr = default_step_transform_max_lr)
self.adaptive_step_transform = adaptive_step_transform
# momentum related
self.to_momentum = Sequential(
nn.Linear(dim, heads * momentum_order),
Rearrange('b n (h o) -> o (b h) n 1', o = momentum_order)
) if momentum else None
self.momentum_order = momentum_order
self.to_learned_momentum_combine = None
if learned_momentum_combine:
assert momentum
assert momentum_order > 1, 'only second order momentum allowed for now, but may allow learned combination of zeroth'
if learned_combine_include_zeroth:
momentum_order += 1
self.to_learned_momentum_combine = Sequential(
nn.Linear(dim, heads * momentum_order),
Rearrange('b n (h o) -> o (b h) n', h = heads),
nn.Softmax(dim = 0),
)
self.learned_combine_include_zeroth = learned_combine_include_zeroth
# per layer learning rate modulation
self.to_layer_modulation = Sequential(
nn.Linear(dim, heads * self.num_memory_parameter_tensors),
Rearrange('b n (h w) -> w (b h) n', h = heads),
nn.Sigmoid()
) if per_parameter_lr_modulation else None
self.max_mem_layer_modulation = max_mem_layer_modulation
# learned weight residual
self.to_learned_weight_residual_mix = Sequential(
nn.Linear(dim, heads),
Rearrange('b n h -> b h n'),
nn.Sigmoid()
) if accept_weight_residual else None
# allow for softclamp the gradient norms for storing memories
self.max_grad_norm = max_grad_norm
# spectral norming the surprises before update, a la Muon from Jordan et al.
self.spectral_norm_surprises = spectral_norm_surprises
# weight decay factor
self.to_decay_factor = Sequential(
nn.Linear(dim, heads),
Rearrange('b n h -> (b h) n 1')
)
# learned transition, as seeing instability when decreasing neural mem batch size
# perhaps it can slowly learn to adjust from early residual to fully transitioning to new weights every batch size
self.transition_gate = nn.Parameter(tensor(-5.)) if gated_transition else None
# inits
if exists(init_adaptive_step_bias):
linear = self.to_adaptive_step[0]
nn.init.zeros_(linear.weight)
nn.init.constant_(linear.bias, init_adaptive_step_bias)
if exists(init_momentum_bias):
linear = self.to_momentum[0]
nn.init.zeros_(linear.weight)
nn.init.constant_(linear.bias, init_momentum_bias)
if exists(init_decay_bias):
linear = self.to_decay_factor[0]
nn.init.zeros_(linear.weight)
nn.init.constant_(linear.bias, init_decay_bias)
# maybe use accelerated scan
self.use_accelerated_scan = use_accelerated_scan
self.register_buffer('zero', torch.tensor(0.), persistent = False)
@property
def memory_model_parameter_dict(self):
return TensorDict(dict(zip(self.memory_model_parameter_names, self.memory_model_parameters)))
def init_weights(
self,
batch,
):
if self.per_head_learned_parameters:
weights = repeat_dict_values(self.memory_model_parameter_dict, 'h ... -> (b h) ...', b = batch)
else:
weights = repeat_dict_values(self.memory_model_parameter_dict, '... -> bh ...', bh = batch * self.heads)
return weights
def init_momentum(
self,
batch,
):
zeros = self.memory_model_parameter_dict.clone().zero_()
if self.per_head_learned_parameters:
zeros = repeat_dict_values(zeros, 'h ... -> o (b h) ...', b = batch, o = self.momentum_order)
else:
zeros = repeat_dict_values(zeros, '... -> o bh ...', bh = batch * self.heads, o = self.momentum_order)
return zeros
def store_memories(
self,
seq,
weights: dict[str, Tensor] | None = None,
past_state: tuple[dict[str, Tensor], dict[str, Tensor]] | None = None,
seq_index = 0,
prev_weights = None,
mask: Tensor | None = None,
return_surprises = True
):
if self.qkv_receives_diff_views:
_, batch, seq_len = seq.shape[:3]
else:
batch, seq_len = seq.shape[:2]
# shapes and variables
heads, chunk_size, num_updates = self.heads, self.store_chunk_size, self.num_kv_per_token
# curtail sequence by multiple of the chunk size
# only a complete chunk of the sequence provides the memory for the next chunk
round_down_seq_len = round_down_multiple(seq_len, chunk_size)
num_chunks = round_down_seq_len // chunk_size
seq, remainder = seq[..., :round_down_seq_len, :], seq[..., round_down_seq_len:, :]
next_seq_len_index = seq_index + round_down_seq_len
# init weights if needed
# weights of the memory network
if not exists(weights):
weights = self.init_weights(batch)
weights = TensorDict(weights)
# allow for neural memory of a previous layer to influence surprise of current layer
weights_for_surprise = repeat_dict_values(weights, 'b ... -> b n ...', n = num_chunks)
# initial norm
seq = self.store_norm(seq)
# handle keys and values coming from different sequences from hyper connection
values_seq = seq
if self.qkv_receives_diff_views:
seq, values_seq = seq
# derive learned hparams for optimization of memory network
adaptive_lr = self.to_adaptive_step(seq)
adaptive_lr = self.adaptive_step_transform(adaptive_lr)
chunked_seq = self.reduce_to_chunk_rep(seq, chunk_size = chunk_size)
decay_factor = self.to_decay_factor(chunked_seq).sigmoid()
need_layer_lr_mod = exists(self.to_layer_modulation) and num_chunks > 0
has_momentum = exists(self.to_momentum)
if has_momentum:
adaptive_momentum = self.to_momentum(chunked_seq).sigmoid()
learned_combine = exists(self.to_learned_momentum_combine)
if learned_combine:
combine_momentums = self.to_learned_momentum_combine(chunked_seq)
if need_layer_lr_mod:
layer_lr_mod = self.to_layer_modulation(chunked_seq) * self.max_mem_layer_modulation
# keys and values
keys = self.to_keys(seq)
values = self.to_values(values_seq)
# maybe multi head
keys, values = map(self.split_kv_heads, (keys, values))
# maybe keys rmsnorm
keys = self.k_norm(keys)
# take care of chunking
keys, values = tuple(rearrange(t, 'b h (n c u) d -> (b h n) (c u) d', c = chunk_size, u = num_updates) for t in (keys, values))
# adaptive lr
adaptive_lr = rearrange(adaptive_lr, 'b (n c u) -> (b n) (c u)', c = chunk_size, u = num_updates)
# optionally a storing memories mask can be passed in. if False, will set the learning rate to 0. for those positions
if exists(mask):
mask = mask[..., :round_down_seq_len]
mask = repeat(mask, 'b (n c) -> (b h n) (c u)', h = heads, u = num_updates, c = chunk_size)
adaptive_lr = torch.where(mask, adaptive_lr, 0.)
# maybe add previous layer weight
assert xnor(exists(self.to_learned_weight_residual_mix), exists(prev_weights))
if exists(prev_weights):
start_index = math.ceil(seq_index / chunk_size)
end_index = start_index + num_chunks
prev_weights = prev_weights.apply(lambda t: t[:, start_index:end_index])
if exists(self.to_learned_weight_residual_mix) and num_chunks > 0:
mix = self.to_learned_weight_residual_mix(chunked_seq)
mix = rearrange(mix, 'b h n -> (b h) n')
prev_weights = prev_weights.apply(lambda t: einx.multiply('bh n, bh n ... -> bh n ...', mix, t))
weights_for_surprise = weights_for_surprise + prev_weights
# flatten batch and time if surprise depends on previous layer memory model
weights_for_surprise = rearrange_dict_values(weights_for_surprise, 'b n ... -> (b n) ...')
# get grads and extra auxiliary loss (for backwarding through qkv projection in base neural memory module)
grads, unweighted_mem_model_loss = self.per_sample_grad_fn(dict(weights_for_surprise), keys, adaptive_lr, values)
grads = TensorDict(grads)
# surprises
adaptive_lr = rearrange(adaptive_lr, '(b h n) c -> b h (n c)', b = batch, h = heads)
unweighted_mem_model_loss = rearrange(unweighted_mem_model_loss, '(b h n) c -> b h (n c)', b = batch, h = heads)
# maybe softclamp grad norm
if exists(self.max_grad_norm):
grads = grads.apply(lambda t: softclamp_grad_norm(t, self.max_grad_norm))
# restore batch and sequence dimension
grads = rearrange_dict_values(grads, '(b n) ... -> b n ...', b = batch * heads)
# maybe per layer modulation
if need_layer_lr_mod:
grads = TensorDict({name: einx.multiply('b h, b h ... -> b h ...', layer_lr_mod, t) for layer_lr_mod, (name, t) in zip(layer_lr_mod, grads.items())})
# negative gradients, adaptive lr already applied as loss weight
surprises = grads.mul(-1)
# past states
if not exists(past_state):
# minibatch_init_weight corresponds to W0 in figure 7 of TTT paper
minibatch_init_weight = weights
init_momentum = self.init_momentum(batch)
past_state = (minibatch_init_weight, init_momentum)
past_last_update, past_last_momentum = past_state
# early return if sequence length less than chunk size
if num_chunks == 0:
updates = rearrange_dict_values(weights, 'bh ... -> bh 1 ...')
next_store_state = NeuralMemState(next_seq_len_index, weights, remainder, past_state, updates)
output = (updates, next_store_state)
if not return_surprises:
return output
return (*output, (unweighted_mem_model_loss, adaptive_lr))
# momentum + weight decay - momentum is the new contribution, as most linear RNNs have learned forgetting gates
updates = TensorDict()
next_last_update = TensorDict()
next_last_momentum = TensorDict()
for (param_name, surprise), (_, last_update) in zip(surprises.items(), past_last_update.items()):
update = surprise
# derive momentum with associative scan - eq (10)
if has_momentum:
momentum = surprise
momentums = [] # stores all momentum orders starting with first, to generalize to Nth order momentum
last_momentum = past_last_momentum[param_name]
# go from first order momentum all the way to the Nth
for one_adaptive_momentum, one_last_momentum in zip_longest(adaptive_momentum, last_momentum):
momentum = self.assoc_scan(one_adaptive_momentum, momentum, prev = one_last_momentum) # momentum is S / surprise in the paper
momentums.append(momentum)
momentums = stack(momentums)
next_last_momentum[param_name] = momentums[:, :, -1] # momentums shape is Float['o bh n 1']
if learned_combine and self.learned_combine_include_zeroth:
# add the original surprise if learned combination of momentums
momentums = cat((rearrange(surprise, '... -> 1 ...'), momentums), dim = 0)
if not learned_combine:
update = momentums[-1]
else:
update = einsum(combine_momentums, momentums, 'o b n, o b n ... -> b n ...')
# maybe spectral norm surprises
if self.spectral_norm_surprises:
update = newtonschulz5(update)
# use associative scan again for learned forgetting (weight decay) - eq (13)
update = self.assoc_scan(1. - decay_factor, update, prev = last_update, remove_prev = False)
updates[param_name] = update
next_last_update[param_name] = update[:, -1]
# determine next state for the storing of memories
next_state = (next_last_update, next_last_momentum)
next_store_state = NeuralMemState(next_seq_len_index, weights, remainder, next_state, updates)
# return updates to neural memory at all chunked timesteps + neural mem cache / state to be fed back
if not return_surprises:
return updates, next_store_state
return updates, next_store_state, (unweighted_mem_model_loss, adaptive_lr)
def retrieve_memories(
self,
seq,
weights: dict[str, Tensor],
):
chunk_size = self.retrieve_chunk_size
weights_have_expanded_shape = dict_get_value_shapes(weights) != self.init_weight_shape
batch, seq_len = seq.shape[:2]
# auto infer single token decoding, if there are only 1 set of weights and 1 token
is_one_token = seq_len == 1
is_one_weight = (not weights_have_expanded_shape) or next(iter(weights.values())).shape[1] == 1
is_single_token_decode = is_one_token and is_one_weight
if is_single_token_decode:
chunk_size = 1
# padding related, for chunked processing
need_pad = chunk_size > 1 or not is_one_weight
if need_pad:
seq = pad_at_dim(seq, (1, 0), dim = 1)
seq_len_plus_one = seq.shape[-2]
next_seq_len = round_up_multiple(seq_len_plus_one, chunk_size)
padding = next_seq_len - seq_len_plus_one
seq = pad_at_dim(seq, (0, padding), dim = 1)
# the parameters of the memory model stores the memories of the key / values
# when the MLP has only 1 weight matrix, it is equivalent to `kv` fast weight memories from linear attention literature (recall fetching of memories is q @ (kv)) / schmidhuber's paper
weights = TensorDict(weights)
# pre norm
seq = self.retrieve_norm(seq)
# sequence Float['b n d'] to queries
queries = self.to_queries(seq)
# maybe multihead
queries = self.split_heads(queries)
# maybe qk rmsnorm
queries = self.q_norm(queries)
# fetch values from memory model
if weights_have_expanded_shape:
weights = rearrange_dict_values(weights, 'b n ... -> (b n) ...')
queries = rearrange(queries, 'b h (n c) d -> (b h n) c d', c = chunk_size)
# forward functional call
values = functional_call(self.memory_model, dict(weights), queries)
# reconstitute batch dimension
values = rearrange(values, '(b h n) c d -> b h (n c) d', b = batch, h = self.heads)
values = self.multihead_rmsnorm(values)
# maybe gate
if exists(self.retrieve_gate):
values = values * self.retrieve_gate(seq)
# maybe merge heads and combine
values = self.merge_heads(values)
values = self.combine_heads(values)
# restore, pad with empty memory embed
if need_pad:
values = values[:, 1:]
return values[:, :seq_len]
def forward(
self,
seq,
store_seq = None,
state: NeuralMemState | None = None,
detach_mem_state = False,
prev_weights = None,
store_mask: Tensor | None = None,
return_surprises = False,
ttt_batch_size: int | None = None
):
is_multi_input = self.qkv_receives_diff_views
# handle single token
if seq.ndim == 2 or (is_multi_input and seq.ndim == 3):
seq = rearrange(seq, '... b d -> ... b 1 d')
is_single_token = seq.shape[-2] == 1
# if different views for qkv, then
if is_multi_input:
retrieve_seq, seq = seq[0], seq[1:]
else:
retrieve_seq = seq
# handle previous state init
if not exists(state):
state = (0, None, None, None, None)
seq_index, weights, cache_store_seq, past_state, updates = state
# store
store_seq = default(store_seq, seq)
# take care of cache
if exists(cache_store_seq):
store_seq = safe_cat((cache_store_seq, store_seq))
if exists(store_mask):
cache_len = cache_store_seq.shape[-2]
if cache_len > 0:
cache_mask = torch.ones(
(*store_mask.shape[:-1], cache_len),
device=store_mask.device,
dtype=store_mask.dtype,
)
store_mask = torch.cat((cache_mask, store_mask), dim=-1)
if exists(store_mask) and store_mask.shape[-1] != store_seq.shape[-2]:
diff = store_seq.shape[-2] - store_mask.shape[-1]
if diff > 0:
store_seq = store_seq[..., diff:, :]
elif diff < 0:
store_mask = store_mask[..., (-diff):]
# compute split sizes of sequence
# for now manually update weights to last update at the correct boundaries
store_seq_len, chunk_size, batch_size = store_seq.shape[-2], self.chunk_size, default(ttt_batch_size, self.batch_size)
need_update_weights = exists(batch_size)
# determine split sizes and when to update
if need_update_weights:
update_after_final_store = divisible_by(seq_index + store_seq_len, batch_size)
seq_range = torch.arange(store_seq_len) + seq_index + 1
batch_boundary = divisible_by(seq_range, batch_size)
indices = seq_range[batch_boundary] - seq_index
indices = F.pad(indices, (1, 0), value = 0)
if indices[-1] != store_seq_len:
indices = F.pad(indices, (0, 1), value = store_seq_len)
split_sizes = (indices[1:] - indices[:-1]).tolist()
assert sum(split_sizes) == store_seq_len
else:
split_sizes = (store_seq_len,)
update_after_final_store = False
# accumulate updates
updates = None
def accum_updates(past_updates, future_updates):
if not exists(past_updates):
return future_updates
return TensorDict({param_name: cat((past_update[:, :-1], future_update), dim = 1) for (param_name, past_update), (_, future_update) in zip(past_updates.items(), future_updates.items())})
# loop through chunks of store sequences
store_seqs = store_seq.split(split_sizes, dim = -2)
if exists(store_mask):
store_masks = store_mask.split(split_sizes, dim = -1)
else:
store_masks = (None,) * len(split_sizes)
# whether to allow network to slowly adjust from initial weight throughout (residual path) to fully updating weights every batch
surprises = (None, None)
gate = None
if exists(self.transition_gate):
gate = self.transition_gate.sigmoid()
for ind, (store_seq_chunk, maybe_store_mask) in enumerate(zip(store_seqs, store_masks)):
is_last = ind == (len(store_seqs) - 1)
# store
next_updates, next_neural_mem_state, chunk_surprises = self.store_memories(
store_seq_chunk,
weights,
seq_index = seq_index,
past_state = past_state,
prev_weights = prev_weights,
mask = maybe_store_mask,
return_surprises = True
)
weights = next_neural_mem_state.weights
seq_index = next_neural_mem_state.seq_index
past_state = next_neural_mem_state.states
updates = accum_updates(updates, next_updates)
surprises = tuple(safe_cat(args, dim = -1) for args in zip(surprises, chunk_surprises))
if is_last and not update_after_final_store:
continue
# update weights once batch size is fulfilled
last_update, last_momentum = past_state
if exists(gate):
last_update = TensorDict({param_name: one_weight.lerp(one_last_update, gate) for (param_name, one_weight), (_, one_last_update) in zip(weights.items(), last_update.items())})
past_state = (last_update, last_momentum)
# set weights to the last updated weights for the last minibatch
weights = last_update
next_neural_mem_state = next_neural_mem_state._replace(
weights = weights,
states = past_state,
)
next_neural_mem_state = next_neural_mem_state._replace(updates = updates)
# retrieve
if is_single_token:
last_update, _ = next_neural_mem_state.states
updates = rearrange_dict_values(last_update, 'b ... -> b 1 ...')
retrieved = self.retrieve_memories(
retrieve_seq,
updates
)
# maybe detach
if detach_mem_state:
next_neural_mem_state = mem_state_detach(next_neural_mem_state)
# returning
if not return_surprises:
return retrieved, next_neural_mem_state
return retrieved, next_neural_mem_state, surprises