

As a hint, solution to an indefinite integral is provided.

$$\int e^x \sin(x) dx$$

Solution Take e^x as the first function and $\sin x$ as the second function. Then, integrating by parts, we have

$$\begin{aligned} I &= \int e^x \sin(x) dx = e^x(-\cos(x)) + \int e^x \cos(x) dx \\ &= -e^x \cos(x) + I_1(\text{say}) \end{aligned}$$

Take e^x and $\cos(x)$ as the first and second functions, respectively, in I_1 . Then, solving I_1 , we get

$$I = e^x \sin(x) - \int e^x \sin(x) dx$$

Substituting the value of I_1 in I , we get

$$I = -e^x \cos(x) + e^x \sin(x) - I$$

which can be written as,

$$2I = e^x(\sin x - \cos x)$$

Hence,

$$I = \int e^x \sin(x) dx = \frac{e^x}{2}(\sin(x) - \cos(x)) + C$$

Alternatively, above integral can also be determined by taking $\sin(x)$ as the first function and e^x as the second function.