| ''' | |
| Given an array of n integers nums, a 132 pattern is a subsequence of three integers nums[i], nums[j] and nums[k] such that i < j < k and nums[i] < nums[k] < nums[j]. | |
| Return true if there is a 132 pattern in nums, otherwise, return false. | |
| Follow up: The O(n^2) is trivial, could you come up with the O(n logn) or the O(n) solution? | |
| Example 1: | |
| Input: nums = [1,2,3,4] | |
| Output: false | |
| Explanation: There is no 132 pattern in the sequence. | |
| Example 2: | |
| Input: nums = [3,1,4,2] | |
| Output: true | |
| Explanation: There is a 132 pattern in the sequence: [1, 4, 2]. | |
| Example 3: | |
| Input: nums = [-1,3,2,0] | |
| Output: true | |
| Explanation: There are three 132 patterns in the sequence: [-1, 3, 2], [-1, 3, 0] and [-1, 2, 0]. | |
| Constraints: | |
| n == nums.length | |
| 1 <= n <= 104 | |
| -109 <= nums[i] <= 109 | |
| ''' | |
| class Solution: | |
| def find132pattern(self, nums: List[int]) -> bool: | |
| if len(set(nums)) < 3: | |
| return False | |
| min_nums = [nums[0]] | |
| for i in range(1, len(nums)): | |
| min_nums.append(min(nums[i], min_nums[-1])) | |
| stack = [] | |
| i = len(nums) - 1 | |
| for i in range(len(nums)-1, -1, -1): | |
| if( nums[i] > min_nums[i] ): | |
| while( stack and stack[-1] <= min_nums[i] ): | |
| stack.pop() | |
| if(stack and min_nums[i] < stack[-1] < nums[i] ): | |
| return True | |
| stack.append(nums[i]) | |
| return False |