File size: 9,306 Bytes
5fed0fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
#include <bits/stdc++.h>
using namespace std;
struct Cell { int x, y; };
struct Transform { int R, F; }; // reflect (y-axis) then rotate R*90° CW
struct Oriented {
vector<Cell> pts; // normalized: minx=miny=0
int w, h;
int offx, offy; // = -minx, -miny (to undo normalization for output)
Transform tf;
};
struct Piece {
int id;
vector<Cell> base;
vector<Oriented> variants;
int area;
};
static inline uint64_t pack_xy(int x,int y){
return (uint64_t(uint32_t(x))<<32) | uint32_t(y);
}
static inline pair<int,int> apply_transform(int x,int y,int F,int R){
if (F) x = -x;
switch (R & 3){
case 0: return { x, y};
case 1: return { y, -x}; // 90 CW
case 2: return {-x, -y}; // 180
default:return {-y, x}; // 270 CW
}
}
static Oriented make_oriented(const vector<Cell>& base,int F,int R){
vector<Cell> t; t.reserve(base.size());
int minx=INT_MAX,miny=INT_MAX,maxx=INT_MIN,maxy=INT_MIN;
for (auto &c: base){
auto [tx,ty]=apply_transform(c.x,c.y,F,R);
minx=min(minx,tx); miny=min(miny,ty);
maxx=max(maxx,tx); maxy=max(maxy,ty);
t.push_back({tx,ty});
}
// normalization
for (auto &c: t){ c.x -= minx; c.y -= miny; }
int W = maxx-minx+1, H = maxy-miny+1;
sort(t.begin(), t.end(), [](const Cell&a,const Cell&b){
if (a.y!=b.y) return a.y<b.y; return a.x<b.x;
});
return Oriented{t, W, H, -minx, -miny, Transform{R,F}};
}
static void build_variants(Piece& P){
vector<Oriented> cand; cand.reserve(8);
for (int F=0;F<=1;++F) for (int R=0;R<4;++R)
cand.push_back(make_oriented(P.base,F,R));
// dedup
vector<Oriented> uniq;
for (auto &o: cand){
bool dup=false;
for (auto &u: uniq){
if (u.w==o.w && u.h==o.h && u.pts.size()==o.pts.size()){
bool same=true;
for (size_t i=0;i<u.pts.size();++i)
if (u.pts[i].x!=o.pts[i].x || u.pts[i].y!=o.pts[i].y){ same=false; break; }
if (same){ dup=true; break; }
}
}
if (!dup) uniq.push_back(o);
}
P.variants.swap(uniq);
}
struct Placement { int X=0,Y=0,R=0,F=0; int w=0,h=0; int vi=-1; }; // vi = variant index used
struct PackedSolution { int W=0,H=0; vector<Placement> place; };
struct World {
int W, Hlimit; // square side S; W==Hlimit==S
vector<int> height;
unordered_set<uint64_t> occ;
int maxH=0;
World(int S=1){ clear(S); }
void clear(int S){ W=S; Hlimit=S; height.assign(W,0); occ.clear(); maxH=0; }
inline int shelfY(int x,int w) const {
int y=0; for (int i=0;i<w;++i) y=max(y,height[x+i]); return y;
}
inline bool can_place(const Oriented& o,int X,int Y) const {
if (X<0 || Y<0) return false;
if (X + o.w > W) return false;
if (Y + o.h > Hlimit) return false; // enforce square height cap
for (auto &c: o.pts){
int gx=X+c.x, gy=Y+c.y;
if (occ.find(pack_xy(gx,gy))!=occ.end()) return false;
}
return true;
}
inline void do_place(const Oriented& o,int X,int Y){
for (auto &c: o.pts){
int gx=X+c.x, gy=Y+c.y;
occ.insert(pack_xy(gx,gy));
height[gx]=max(height[gx], gy+1);
if (height[gx]>maxH) maxH=height[gx];
}
}
};
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n; if(!(cin>>n)) return 0;
vector<Piece> P(n);
long long totalCells=0;
for (int i=0;i<n;++i){
P[i].id=i;
int k; cin>>k;
P[i].base.resize(k);
for (int j=0;j<k;++j){ int x,y; cin>>x>>y; P[i].base[j]={x,y}; }
P[i].area=k; totalCells+=k;
build_variants(P[i]);
}
// Place larger / less flexible first
vector<int> order(n); iota(order.begin(), order.end(), 0);
sort(order.begin(), order.end(), [&](int a,int b){
if (P[a].area!=P[b].area) return P[a].area>P[b].area;
return P[a].variants.size()<P[b].variants.size();
});
// Lower bound on square side:
// 1) area bound
int S_area = (int)ceil(sqrt((long double)totalCells));
// 2) geometry bound: each piece needs some min side to fit; use min over variants of max(w,h)
int S_geom = 1;
for (auto &p: P){
int need = INT_MAX;
for (auto &o: p.variants) need = min(need, max(o.w, o.h));
S_geom = max(S_geom, need);
}
int S0 = max(S_area, S_geom);
// Generate candidate square sizes; grow if needed
vector<int> sides = {
S0,
max(S0, (int)ceil(1.05*S0)),
max(S0, (int)ceil(1.15*S0)),
max(S0, (int)ceil(0.95*S0))
};
sort(sides.begin(), sides.end());
sides.erase(unique(sides.begin(), sides.end()), sides.end());
auto better = [](const PackedSolution& A, const PackedSolution& B){
if (B.W==0) return true;
long long aA=1LL*A.W*A.H, aB=1LL*B.W*B.H;
if (aA!=aB) return aA<aB;
// If equal area (same S), prefer lower max column height (tie-breaker, though W=H).
if (A.H!=B.H) return A.H<B.H;
return A.W<B.W;
};
PackedSolution best; best.W=0; best.H=INT_MAX;
auto try_with_side = [&](int S)->optional<PackedSolution>{
World world(S);
world.occ.reserve((size_t)totalCells*2 + 1024);
vector<Placement> place(n);
for (int idx=0; idx<n; ++idx){
int i = order[idx];
auto &piece = P[i];
// Favor shorter/taller shapes appropriately
vector<int> vord(piece.variants.size());
iota(vord.begin(), vord.end(), 0);
sort(vord.begin(), vord.end(), [&](int a,int b){
const auto&A=piece.variants[a], &B=piece.variants[b];
if (A.h!=B.h) return A.h<B.h;
if (A.w!=B.w) return A.w>B.w;
return A.pts.size()>B.pts.size();
});
int bestVi=-1, bestX=-1, bestY=INT_MAX;
for (int vi: vord){
const auto &o = piece.variants[vi];
if (o.w > world.W || o.h > world.Hlimit) continue;
// x scan (try both coarse step and right align)
int step = max(1, o.w/2);
for (int x=0; x + o.w <= world.W; x += step){
int y = world.shelfY(x, o.w);
if (y + o.h > world.Hlimit) continue; // square cap
if (y > bestY) continue;
if (!world.can_place(o, x, y)) continue;
bestY=y; bestX=x; bestVi=vi;
}
int xr = world.W - o.w;
if (xr>=0){
int y = world.shelfY(xr, o.w);
if (y + o.h <= world.Hlimit && y <= bestY && world.can_place(o, xr, y)){
bestY=y; bestX=xr; bestVi=vi;
}
}
}
if (bestVi<0) return {}; // fail for this S
const auto &o = piece.variants[bestVi];
world.do_place(o, bestX, bestY);
place[i] = {bestX, bestY, o.tf.R, o.tf.F, o.w, o.h, bestVi};
}
// success with this S
PackedSolution cand;
cand.W = S;
cand.H = S; // enforce square
cand.place.resize(n);
for (int i=0;i<n;++i) cand.place[i]=place[i];
return cand;
};
// Try preset candidates
for (int S : sides){
if (auto sol = try_with_side(S)){
if (best.W==0 || better(*sol,best)) best=*sol;
}
}
// If none worked, escalate S until it does (guaranteed cap: vertical stack height)
if (best.W==0){
// Safe upper bound: stack piece heights of a chosen variant each
int maxW=1, sumH=0;
for (auto &p: P){
int wmin=INT_MAX, hmin=INT_MAX;
for (auto &o: p.variants){
wmin = min(wmin, o.w);
hmin = min(hmin, o.h);
}
maxW = max(maxW, wmin);
sumH += hmin;
}
int S = max({S0, maxW, sumH}); // square that trivially fits vertical stack
// grow linearly from S0 to S (usually hits long before)
for (int s = S0; s <= S; ++s){
if (auto sol = try_with_side(s)){ best = *sol; break; }
}
// If still nothing (extremely unlikely), force a trivial square stack at side S
if (best.W==0){
int y=0;
vector<Placement> pl(n);
// Use each piece's first variant
for (int i=0;i<n;++i){
const auto &o = P[i].variants[0];
pl[i]={0,y,o.tf.R,o.tf.F,o.w,o.h,0};
y += o.h;
}
int Sforce = max({S, y, maxW});
best.W = best.H = Sforce;
best.place = move(pl);
}
}
// ---- OUTPUT with offset compensation ----
cout << best.W << " " << best.H << "\n";
for (int i=0;i<n;++i){
const auto &pl = best.place[i];
const auto &o = P[i].variants[pl.vi];
// t = (X - minx, Y - miny) = (X + offx, Y + offy)
int Xout = pl.X + o.offx;
int Yout = pl.Y + o.offy;
cout << Xout << " " << Yout << " " << pl.R << " " << pl.F << "\n";
}
return 0;
}
|