File size: 6,262 Bytes
5fed0fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
Group GEMM Optimization Problem
================================

Problem Setting
---------------
Design and optimize high-performance Triton kernels for Batched Matrix-Matrix Multiplication (BMM) on GPU. This problem focuses on implementing efficient batched matrix multiplication kernels using Triton's JIT compilation system.

The challenge involves optimizing:
- **Batched operations**: Efficient handling of multiple matrix pairs in a single kernel launch
- **Memory access patterns**: Efficient loading and storing of batched matrix data
- **Block tiling**: Optimal block sizes for GPU execution across different batch sizes
- **Performance benchmarking**: Achieving speedup over baseline PyTorch implementations

Target
------
- **Primary**: Maximize geometric mean speedup over baseline (higher is better)
- **Secondary**: Ensure correctness across diverse batch sizes and matrix shapes
- **Tertiary**: Minimize kernel launch overhead and memory usage

API Specification
-----------------
Implement a `Solution` class that returns a Triton kernel implementation:

```python
class Solution:
    def solve(self, spec_path: str = None) -> dict:
        """
        Returns a dict with either:
        - {"code": "python_code_string"}
        - {"program_path": "path/to/kernel.py"}
        """
        # Your implementation
        pass
```

Your kernel implementation must provide:

```python
import torch
import triton
import triton.language as tl

def bmm(A: torch.Tensor, B: torch.Tensor) -> torch.Tensor:
    """
    Batched matrix multiplication.
    
    Args:
        A: Input tensor of shape (B, M, K) - batch of M×K matrices
        B: Input tensor of shape (B, K, N) - batch of K×N matrices
    
    Returns:
        Output tensor of shape (B, M, N) - batch of M×N result matrices
    """
    pass
```

API Usage Notes
---------------
- The evaluator looks for a `bmm` function in the module namespace
- Function must handle tensor strides and memory layouts correctly
- Must use Triton JIT compilation for kernel definition
- Should leverage Triton's autotuning features for optimization
- Kernel must handle variable batch sizes efficiently

Common Pitfalls & Implementation Requirements
---------------------------------------------
**Triton Autotune Keys:**
- Autotune `key` parameter must only include actual kernel parameters (e.g., `["M", "N", "K"]`)
- Do NOT include non-kernel parameters in the autotune key (e.g., `dtype_a`, `dtype_b`)
- Example (correct): `@triton.autotune(configs=[...], key=["M", "N", "K"])`
- Example (incorrect): `@triton.autotune(configs=[...], key=["M", "N", "K", "dtype_a"])`

**Dtype Casting:**
- Use `tl.float16` directly for output dtype casting: `acc.to(tl.float16)` (correct)
- Do NOT use `tl.dtype_elementwise(C_ptr)` - this function doesn't exist in Triton 3.4.0 (incorrect)
- The problem requires float16 output, so always cast accumulator to `tl.float16`

**Kernel Parameters:**
- Only pass actual kernel parameters as arguments to the kernel
- Do NOT pass Python objects (like `dtype`) as keyword arguments unless they're defined as kernel parameters
- Example (correct): `_bmm_kernel[grid](A, B, C, Batches, M, N, K, ..., BLOCK_M, BLOCK_N, BLOCK_K)`

**Correctness Requirements:**
- All tests must pass (correctness check) for any score > 0
- Output dtype must be float16 (match baseline behavior)
- Output shape must be (B, M, N) where B is batch size

**Kernel Implementation Pattern:**
- Initialize pointers inside the K-loop for each iteration (computes pointers per K-slice)
- Use proper boundary masking: `k_mask = (k + offs_k) < K` or `k_idxs = k0 + offs_k` with `k_idxs < K`
- Load data and convert to float32 BEFORE accumulation: `a = tl.load(A_ptrs, mask=a_mask, other=0.0).to(tl.float32)`
- Accumulate in float32: `acc += tl.dot(a, b)` where `acc` is `dtype=tl.float32`
- Example K-loop pattern:
  ```python
  k0 = 0
  while k0 < K:
      k_idxs = k0 + offs_k
      A_ptrs = A_batch_ptr + (offs_m[:, None] * stride_am) + (k_idxs[None, :] * stride_ak)
      B_ptrs = B_batch_ptr + (k_idxs[:, None] * stride_bk) + (offs_n[None, :] * stride_bn)
      a_mask = (offs_m[:, None] < M) & (k_idxs[None, :] < K)
      b_mask = (offs_n[None, :] < N) & (k_idxs[:, None] < K)
      a = tl.load(A_ptrs, mask=a_mask, other=0.0).to(tl.float32)
      b = tl.load(B_ptrs, mask=b_mask, other=0.0).to(tl.float32)
      acc += tl.dot(a, b)
      k0 += BLOCK_K
  ```

**Solution.solve() Method:**
- Read file directly using `Path(__file__).read_text()` (correct)
- Do NOT use `inspect.getsource(sys.modules[__name__])` - fails when module is dynamically loaded (incorrect)
- Example (correct):
  ```python
  def solve(self, spec_path: Optional[str] = None) -> Dict[str, str]:
      from pathlib import Path
      current_file = Path(__file__).resolve()
      return {"code": current_file.read_text(encoding="utf-8")}
  ```

**Performance Optimization Tips:**
- Use FP32 accumulator for numerical stability: `acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)`
- Load data as float32: `a = tl.load(...).to(tl.float32)` - critical for correctness
- Cast to float16 only at the end: `tl.store(c_ptrs, acc.to(tl.float16), mask=c_mask)`
- Consider using autotune to find optimal block sizes and warp configurations
- Test with warmup phase to stabilize GPU clocks before benchmarking

Scoring (0-100)
---------------
Performance is measured against baseline implementations:

```
geometric_mean_speedup = geometric_mean(baseline_times / answer_times)
raw_score = min(geometric_mean_speedup, 5.0)  # Cap at 5x speedup
score = (raw_score - 1.0) / 4.0 * 100  # Map 1x-5x to 0-100
```

- 0 points = No speedup (1x baseline performance)
- 25 points = 2x speedup over baseline
- 50 points = 3x speedup over baseline
- 75 points = 4x speedup over baseline
- 100 points = 5x+ speedup over baseline

Evaluation Details
------------------
- Tested on multiple batch sizes: B ∈ {64, 256, 1024} (default)
- Fixed matrix dimensions: M=64, N=64, K=64 (configurable via metadata)
- Can also test custom shapes specified in metadata
- Correctness verified with tolerance: rtol=1e-2, atol=5e-3
- Performance measured using median execution time
- Requires CUDA backend and GPU support
- All tests must pass for any score > 0