File size: 6,262 Bytes
5fed0fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
Group GEMM Optimization Problem
================================
Problem Setting
---------------
Design and optimize high-performance Triton kernels for Batched Matrix-Matrix Multiplication (BMM) on GPU. This problem focuses on implementing efficient batched matrix multiplication kernels using Triton's JIT compilation system.
The challenge involves optimizing:
- **Batched operations**: Efficient handling of multiple matrix pairs in a single kernel launch
- **Memory access patterns**: Efficient loading and storing of batched matrix data
- **Block tiling**: Optimal block sizes for GPU execution across different batch sizes
- **Performance benchmarking**: Achieving speedup over baseline PyTorch implementations
Target
------
- **Primary**: Maximize geometric mean speedup over baseline (higher is better)
- **Secondary**: Ensure correctness across diverse batch sizes and matrix shapes
- **Tertiary**: Minimize kernel launch overhead and memory usage
API Specification
-----------------
Implement a `Solution` class that returns a Triton kernel implementation:
```python
class Solution:
def solve(self, spec_path: str = None) -> dict:
"""
Returns a dict with either:
- {"code": "python_code_string"}
- {"program_path": "path/to/kernel.py"}
"""
# Your implementation
pass
```
Your kernel implementation must provide:
```python
import torch
import triton
import triton.language as tl
def bmm(A: torch.Tensor, B: torch.Tensor) -> torch.Tensor:
"""
Batched matrix multiplication.
Args:
A: Input tensor of shape (B, M, K) - batch of M×K matrices
B: Input tensor of shape (B, K, N) - batch of K×N matrices
Returns:
Output tensor of shape (B, M, N) - batch of M×N result matrices
"""
pass
```
API Usage Notes
---------------
- The evaluator looks for a `bmm` function in the module namespace
- Function must handle tensor strides and memory layouts correctly
- Must use Triton JIT compilation for kernel definition
- Should leverage Triton's autotuning features for optimization
- Kernel must handle variable batch sizes efficiently
Common Pitfalls & Implementation Requirements
---------------------------------------------
**Triton Autotune Keys:**
- Autotune `key` parameter must only include actual kernel parameters (e.g., `["M", "N", "K"]`)
- Do NOT include non-kernel parameters in the autotune key (e.g., `dtype_a`, `dtype_b`)
- Example (correct): `@triton.autotune(configs=[...], key=["M", "N", "K"])`
- Example (incorrect): `@triton.autotune(configs=[...], key=["M", "N", "K", "dtype_a"])`
**Dtype Casting:**
- Use `tl.float16` directly for output dtype casting: `acc.to(tl.float16)` (correct)
- Do NOT use `tl.dtype_elementwise(C_ptr)` - this function doesn't exist in Triton 3.4.0 (incorrect)
- The problem requires float16 output, so always cast accumulator to `tl.float16`
**Kernel Parameters:**
- Only pass actual kernel parameters as arguments to the kernel
- Do NOT pass Python objects (like `dtype`) as keyword arguments unless they're defined as kernel parameters
- Example (correct): `_bmm_kernel[grid](A, B, C, Batches, M, N, K, ..., BLOCK_M, BLOCK_N, BLOCK_K)`
**Correctness Requirements:**
- All tests must pass (correctness check) for any score > 0
- Output dtype must be float16 (match baseline behavior)
- Output shape must be (B, M, N) where B is batch size
**Kernel Implementation Pattern:**
- Initialize pointers inside the K-loop for each iteration (computes pointers per K-slice)
- Use proper boundary masking: `k_mask = (k + offs_k) < K` or `k_idxs = k0 + offs_k` with `k_idxs < K`
- Load data and convert to float32 BEFORE accumulation: `a = tl.load(A_ptrs, mask=a_mask, other=0.0).to(tl.float32)`
- Accumulate in float32: `acc += tl.dot(a, b)` where `acc` is `dtype=tl.float32`
- Example K-loop pattern:
```python
k0 = 0
while k0 < K:
k_idxs = k0 + offs_k
A_ptrs = A_batch_ptr + (offs_m[:, None] * stride_am) + (k_idxs[None, :] * stride_ak)
B_ptrs = B_batch_ptr + (k_idxs[:, None] * stride_bk) + (offs_n[None, :] * stride_bn)
a_mask = (offs_m[:, None] < M) & (k_idxs[None, :] < K)
b_mask = (offs_n[None, :] < N) & (k_idxs[:, None] < K)
a = tl.load(A_ptrs, mask=a_mask, other=0.0).to(tl.float32)
b = tl.load(B_ptrs, mask=b_mask, other=0.0).to(tl.float32)
acc += tl.dot(a, b)
k0 += BLOCK_K
```
**Solution.solve() Method:**
- Read file directly using `Path(__file__).read_text()` (correct)
- Do NOT use `inspect.getsource(sys.modules[__name__])` - fails when module is dynamically loaded (incorrect)
- Example (correct):
```python
def solve(self, spec_path: Optional[str] = None) -> Dict[str, str]:
from pathlib import Path
current_file = Path(__file__).resolve()
return {"code": current_file.read_text(encoding="utf-8")}
```
**Performance Optimization Tips:**
- Use FP32 accumulator for numerical stability: `acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)`
- Load data as float32: `a = tl.load(...).to(tl.float32)` - critical for correctness
- Cast to float16 only at the end: `tl.store(c_ptrs, acc.to(tl.float16), mask=c_mask)`
- Consider using autotune to find optimal block sizes and warp configurations
- Test with warmup phase to stabilize GPU clocks before benchmarking
Scoring (0-100)
---------------
Performance is measured against baseline implementations:
```
geometric_mean_speedup = geometric_mean(baseline_times / answer_times)
raw_score = min(geometric_mean_speedup, 5.0) # Cap at 5x speedup
score = (raw_score - 1.0) / 4.0 * 100 # Map 1x-5x to 0-100
```
- 0 points = No speedup (1x baseline performance)
- 25 points = 2x speedup over baseline
- 50 points = 3x speedup over baseline
- 75 points = 4x speedup over baseline
- 100 points = 5x+ speedup over baseline
Evaluation Details
------------------
- Tested on multiple batch sizes: B ∈ {64, 256, 1024} (default)
- Fixed matrix dimensions: M=64, N=64, K=64 (configurable via metadata)
- Can also test custom shapes specified in metadata
- Correctness verified with tolerance: rtol=1e-2, atol=5e-3
- Performance measured using median execution time
- Requires CUDA backend and GPU support
- All tests must pass for any score > 0
|