File size: 5,217 Bytes
5fed0fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
Symbolic Regression Benchmark - Mixed PolyExp 4D Dataset
=========================================================

Problem Setting
---------------
Learn a closed-form symbolic expression `f(x1, x2, x3, x4)` that predicts the target `y`.

This is a higher-dimensional dataset (4 input features) combining polynomial interactions with exponential decay. The function involves cross-terms between variables and Gaussian-like damping, making it more challenging than the 2D variants.

Input Format
------------
- Your `Solution.solve` receives:
  - `X`: numpy.ndarray of shape `(n, 4)` containing feature values
  - `y`: numpy.ndarray of shape `(n,)` containing target values
- Dataset columns: `x1, x2, x3, x4, y`

Output Specification
--------------------
Implement a `Solution` class in `solution.py`:

```python
import numpy as np

class Solution:
    def __init__(self, **kwargs):
        pass

    def solve(self, X: np.ndarray, y: np.ndarray) -> dict:
        """
        Args:
            X: Feature matrix of shape (n, 4)
            y: Target values of shape (n,)

        Returns:
            dict with keys:
              - "expression": str, a Python-evaluable expression using x1, x2, x3, x4
              - "predictions": list/array of length n (optional)
              - "details": dict with optional "complexity" int
        """
        # Example: fit a symbolic expression to the data
        expression = "x1 + x2 + x3 + x4"  # placeholder
        return {
            "expression": expression,
            "predictions": None,  # will be computed from expression if omitted
            "details": {}
        }
```

Expression Requirements:
- Must be a valid Python expression string
- Use variable names: `x1`, `x2`, `x3`, `x4`
- Allowed operators: `+`, `-`, `*`, `/`, `**`
- Allowed functions: `sin`, `cos`, `exp`, `log`
- Numeric constants are allowed

Dependencies (pinned versions)
------------------------------
```
pysr==0.19.0
numpy==1.26.4
pandas==2.2.2
sympy==1.13.3
```

Minimal Working Examples
------------------------

**Example 1: Using PySR (recommended)**
```python
import numpy as np
from pysr import PySRRegressor

class Solution:
    def __init__(self, **kwargs):
        pass

    def solve(self, X: np.ndarray, y: np.ndarray) -> dict:
        model = PySRRegressor(
            niterations=50,  # more iterations for 4D
            binary_operators=["+", "-", "*", "/"],
            unary_operators=["sin", "cos", "exp", "log"],
            populations=20,
            population_size=40,
            maxsize=30,  # larger for 4D complexity
            verbosity=0,
            progress=False,
            random_state=42,
        )
        model.fit(X, y, variable_names=["x1", "x2", "x3", "x4"])

        # Get best expression as sympy, convert to string
        best_expr = model.sympy()
        expression = str(best_expr)

        # Predictions
        predictions = model.predict(X)

        return {
            "expression": expression,
            "predictions": predictions.tolist(),
            "details": {}
        }
```

**Example 2: Manual expression (simple baseline)**
```python
import numpy as np

class Solution:
    def __init__(self, **kwargs):
        pass

    def solve(self, X: np.ndarray, y: np.ndarray) -> dict:
        # Simple linear combination as baseline
        x1, x2, x3, x4 = X[:, 0], X[:, 1], X[:, 2], X[:, 3]

        # Fit coefficients via least squares
        A = np.column_stack([x1, x2, x3, x4, np.ones_like(x1)])
        coeffs, _, _, _ = np.linalg.lstsq(A, y, rcond=None)
        a, b, c, d, e = coeffs

        expression = f"{a:.6f}*x1 + {b:.6f}*x2 + {c:.6f}*x3 + {d:.6f}*x4 + {e:.6f}"
        predictions = a * x1 + b * x2 + c * x3 + d * x4 + e

        return {
            "expression": expression,
            "predictions": predictions.tolist(),
            "details": {}
        }
```

PySR API Notes (v0.19.0)
------------------------
- `model.fit(X, y, variable_names=["x1", "x2", "x3", "x4"])` - use variable_names to match expected output
- `model.sympy()` - returns best expression as sympy object
- `model.predict(X)` - returns predictions array
- `model.equations_` - DataFrame of all discovered equations
- Common parameters:
  - `niterations`: number of evolution iterations (more = better but slower)
  - `populations`: number of parallel populations
  - `maxsize`: maximum expression complexity
  - `verbosity=0, progress=False`: suppress output

Expression Format Requirements
------------------------------
- Must be a valid Python expression string
- Use variable names: `x1`, `x2`, `x3`, `x4`
- Allowed operators: `+`, `-`, `*`, `/`, `**`
- Allowed functions: `sin`, `cos`, `exp`, `log` (NO `np.` prefix)
- Numeric constants are allowed
- The evaluator uses `sympy.sympify()` to parse your expression

Scoring
-------
```
MSE = (1/n) Σ (y_i - ŷ_i)²
Score = 100 × clamp((m_base - MSE) / (m_base - m_ref), 0, 1) × 0.99^max(C - C_ref, 0)
```

- `m_base`: linear regression baseline MSE
- `m_ref`, `C_ref`: reference solution MSE and complexity
- `C = 2 × (#binary ops) + (#unary ops)`
- Lower MSE and lower complexity yield higher scores

Environment
-----------
Run `set_up_env.sh` to install dependencies.