andylizf's picture
Upload folder using huggingface_hub
5fed0fc verified
Problem: Distinct Pairwise XOR Set
Time Limit: 1 second
Memory Limit: 512 MB
Description
Given an integer n, find a subset S βŠ† {1, 2, ..., n} such that:
1) For all pairs (a, b) with a, b ∈ S and a < b, the values (a XOR b) are all distinct (i.e., no two different unordered pairs produce the same XOR).
2) |S| β‰₯ floor(sqrt(n / 2)).
Input
A single integer n (1 ≀ n ≀ 10^7).
Output
- First line: an integer m β€” the size of the set S.
- Second line: m distinct integers in the range [1, n] β€” the elements of S, in any order.
Notes
- Any valid S is accepted. You do NOT need to maximize m; you only need m β‰₯ floor(sqrt(n/2)).
- The pairwise XOR distinctness means the set {a_i XOR a_j | 1 ≀ i < j ≀ m} has size m*(m-1)/2.
- Multiple correct outputs may exist for the same n.
- Print out the sequence with the longest length.
Sample
Input
49
Output
4
1 2 3 4