Frontier-CS
/
research
/problems
/gemm_optimization
/rectangles
/resources
/triton_matmul_baseline.py
| import torch | |
| import triton | |
| import triton.language as tl | |
| # Ensure CUDA is available and properly initialize device | |
| if not torch.cuda.is_available(): | |
| raise RuntimeError("CUDA is not available. This benchmark requires a CUDA-enabled GPU.") | |
| DEVICE = torch.device("cuda:0") | |
| torch.cuda.set_device(DEVICE) | |
| def gelu(x): | |
| return x * 0.5 * (1.0 + tl.extra.cuda.libdevice.erf(x * 0.7071067811865476)) | |
| def matmul_kernel( | |
| a_ptr, | |
| b_ptr, | |
| c_ptr, | |
| M, | |
| N, | |
| K, | |
| stride_am, | |
| stride_ak, # | |
| stride_bk, | |
| stride_bn, # | |
| stride_cm, | |
| stride_cn, | |
| # Meta-parameters | |
| BLOCK_SIZE_M: tl.constexpr, | |
| BLOCK_SIZE_N: tl.constexpr, | |
| BLOCK_SIZE_K: tl.constexpr, # | |
| GROUP_SIZE_M: tl.constexpr, # | |
| NUM_STAGES: tl.constexpr, | |
| ): | |
| """Kernel for computing the matmul C = A x B. | |
| A has shape (M, K), B has shape (K, N) and C has shape (M, N) | |
| """ | |
| # ----------------------------------------------------------- | |
| # Map program ids `pid` to the block of C it should compute. | |
| # This is done in a grouped ordering to promote L2 data reuse. | |
| # See above `L2 Cache Optimizations` section for details. | |
| pid = tl.program_id(axis=0) | |
| num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) | |
| num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) | |
| num_pid_in_group = GROUP_SIZE_M * num_pid_n | |
| group_id = pid // num_pid_in_group | |
| first_pid_m = group_id * GROUP_SIZE_M | |
| group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) | |
| pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m) | |
| pid_n = (pid % num_pid_in_group) // group_size_m | |
| # ---------------------------------------------------------- | |
| # Create pointers for the first blocks of A and B. | |
| # We will advance this pointer as we move in the K direction | |
| # and accumulate | |
| # `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers | |
| # `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers | |
| # See above `Pointer Arithmetic` section for details | |
| offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M | |
| offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N | |
| offs_k = tl.arange(0, BLOCK_SIZE_K) | |
| a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) | |
| b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) | |
| # ----------------------------------------------------------- | |
| # Iterate to compute a block of the C matrix. | |
| # We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block | |
| # of fp32 values for higher accuracy. | |
| # `accumulator` will be converted back to fp16 after the loop. | |
| accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) | |
| for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): | |
| # Load the next block of A and B, generate a mask by checking the K dimension. | |
| # If it is out of bounds, set it to 0. | |
| a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0) | |
| b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0) | |
| # We accumulate along the K dimension. | |
| accumulator = tl.dot(a, b, accumulator) | |
| # Advance the ptrs to the next K block. | |
| a_ptrs += BLOCK_SIZE_K * stride_ak | |
| b_ptrs += BLOCK_SIZE_K * stride_bk | |
| accumulator = gelu(accumulator) | |
| c = accumulator.to(tl.float16) | |
| # ----------------------------------------------------------- | |
| # Write back the block of the output matrix C with masks. | |
| offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) | |
| offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) | |
| c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :] | |
| c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) | |
| tl.store(c_ptrs, c, mask=c_mask) | |
| def matmul(a, b): | |
| assert a.shape[1] == b.shape[0], "Illegal dimensions of input operands" | |
| assert a.is_contiguous(), "Matrix A must be contiguous" | |
| (M, N, K) = (a.shape[0], b.shape[1], a.shape[1]) | |
| c = torch.zeros((M, N), dtype=torch.float16, device=DEVICE) | |
| # 1D launch kernel where each block gets its own program. | |
| grid = lambda META: ( | |
| triton.cdiv(M, META["BLOCK_SIZE_M"]) * triton.cdiv(N, META["BLOCK_SIZE_N"]), | |
| ) | |
| matmul_kernel[grid]( | |
| a, | |
| b, | |
| c, # | |
| M, | |
| N, | |
| K, # | |
| a.stride(0), | |
| a.stride(1), # | |
| b.stride(0), | |
| b.stride(1), # | |
| c.stride(0), | |
| c.stride(1), # | |
| ) | |
| return c |