Decoding Attention Optimization Problem ======================================== Problem Setting --------------- Design and optimize high-performance Triton kernels for Decoding Attention computation on GPU. This problem focuses on implementing efficient attention kernels for decoder-only transformer models using Triton's JIT compilation system. The challenge involves optimizing: - **Attention computation**: Efficient computation of scaled dot-product attention - **Memory access patterns**: Efficient loading and storing of Q, K, V tensors - **Numerical stability**: Handling softmax operations with proper numerical stability - **Block tiling**: Optimal block sizes for GPU execution across different sequence lengths - **Performance benchmarking**: Achieving speedup over baseline PyTorch implementations Target ------ - **Primary**: Maximize geometric mean speedup over baseline (higher is better) - **Secondary**: Ensure correctness across diverse sequence lengths and attention heads - **Tertiary**: Minimize kernel launch overhead and memory usage API Specification ----------------- Implement a `Solution` class that returns a Triton kernel implementation: ```python class Solution: def solve(self, spec_path: str = None) -> dict: """ Returns a dict with either: - {"code": "python_code_string"} - {"program_path": "path/to/kernel.py"} """ # Your implementation pass ``` Your kernel implementation must provide: ```python import torch import triton import triton.language as tl def decoding_attn(Q: torch.Tensor, K: torch.Tensor, V: torch.Tensor) -> torch.Tensor: """ Decoding attention computation. Args: Q: Input tensor of shape (Z, H, M, Dq) - query tensor (float16) K: Input tensor of shape (Z, H, N, Dq) - key tensor (float16) V: Input tensor of shape (Z, H, N, Dv) - value tensor (float16) Returns: Output tensor of shape (Z, H, M, Dv) - attention output (float16) """ pass ``` API Usage Notes --------------- - The evaluator looks for a `decoding_attn` function in the module namespace - Function must handle tensor strides and memory layouts correctly - Must use Triton JIT compilation for kernel definition - Should leverage Triton's autotuning features for optimization - Kernel must handle variable sequence lengths efficiently - Output must be float16 tensor of shape (Z, H, M, Dv) Scoring (0-100) --------------- Performance is measured against GPU baseline implementations: ``` geometric_mean_gpu_time = geometric_mean(gpu_baseline_times) geometric_mean_answer_time = geometric_mean(answer_times) # Linear interpolation: 0 points = 1x GPU baseline, 100 points = 3x GPU baseline target_time_0 = geometric_mean_gpu_time # 0 points (1x GPU baseline) target_time_100 = geometric_mean_gpu_time / 3.0 # 100 points (3x speedup over GPU) score = 100 * (target_time_0 - geometric_mean_answer_time) / (target_time_0 - target_time_100) ``` - 0 points = 1x GPU baseline performance - 100 points = 3x speedup over GPU baseline - Score is linearly interpolated between these two points Note: Correctness is verified against GPU baseline, and scoring spans from 1x GPU baseline (0 points) to 3x GPU baseline (100 points). Evaluation Details ------------------ - Tested on multiple sequence lengths: N ∈ {1024, 2048, 4096, 8192} (default) - Fixed dimensions: Z=1, H=8, M=1, Dq=64, Dv=64 (configurable via metadata) - Can also test custom shapes specified in metadata - Correctness verified with tolerance: rtol=1e-2, atol=5e-3 - Performance measured using median execution time - Requires CUDA backend and GPU support - All tests must pass for any score > 0