Group GEMM Optimization Problem ================================ Problem Setting --------------- Design and optimize high-performance Triton kernels for Batched Matrix-Matrix Multiplication (BMM) on GPU. This problem focuses on implementing efficient batched matrix multiplication kernels using Triton's JIT compilation system. The challenge involves optimizing: - **Batched operations**: Efficient handling of multiple matrix pairs in a single kernel launch - **Memory access patterns**: Efficient loading and storing of batched matrix data - **Block tiling**: Optimal block sizes for GPU execution across different batch sizes - **Performance benchmarking**: Achieving speedup over baseline PyTorch implementations Target ------ - **Primary**: Maximize geometric mean speedup over baseline (higher is better) - **Secondary**: Ensure correctness across diverse batch sizes and matrix shapes - **Tertiary**: Minimize kernel launch overhead and memory usage API Specification ----------------- Implement a `Solution` class that returns a Triton kernel implementation: ```python class Solution: def solve(self, spec_path: str = None) -> dict: """ Returns a dict with either: - {"code": "python_code_string"} - {"program_path": "path/to/kernel.py"} """ # Your implementation pass ``` Your kernel implementation must provide: ```python import torch import triton import triton.language as tl def bmm(A: torch.Tensor, B: torch.Tensor) -> torch.Tensor: """ Batched matrix multiplication. Args: A: Input tensor of shape (B, M, K) - batch of M×K matrices B: Input tensor of shape (B, K, N) - batch of K×N matrices Returns: Output tensor of shape (B, M, N) - batch of M×N result matrices """ pass ``` API Usage Notes --------------- - The evaluator looks for a `bmm` function in the module namespace - Function must handle tensor strides and memory layouts correctly - Must use Triton JIT compilation for kernel definition - Should leverage Triton's autotuning features for optimization - Kernel must handle variable batch sizes efficiently Common Pitfalls & Implementation Requirements --------------------------------------------- **Triton Autotune Keys:** - Autotune `key` parameter must only include actual kernel parameters (e.g., `["M", "N", "K"]`) - Do NOT include non-kernel parameters in the autotune key (e.g., `dtype_a`, `dtype_b`) - Example (correct): `@triton.autotune(configs=[...], key=["M", "N", "K"])` - Example (incorrect): `@triton.autotune(configs=[...], key=["M", "N", "K", "dtype_a"])` **Dtype Casting:** - Use `tl.float16` directly for output dtype casting: `acc.to(tl.float16)` (correct) - Do NOT use `tl.dtype_elementwise(C_ptr)` - this function doesn't exist in Triton 3.4.0 (incorrect) - The problem requires float16 output, so always cast accumulator to `tl.float16` **Kernel Parameters:** - Only pass actual kernel parameters as arguments to the kernel - Do NOT pass Python objects (like `dtype`) as keyword arguments unless they're defined as kernel parameters - Example (correct): `_bmm_kernel[grid](A, B, C, Batches, M, N, K, ..., BLOCK_M, BLOCK_N, BLOCK_K)` **Correctness Requirements:** - All tests must pass (correctness check) for any score > 0 - Output dtype must be float16 (match baseline behavior) - Output shape must be (B, M, N) where B is batch size **Kernel Implementation Pattern:** - Initialize pointers inside the K-loop for each iteration (computes pointers per K-slice) - Use proper boundary masking: `k_mask = (k + offs_k) < K` or `k_idxs = k0 + offs_k` with `k_idxs < K` - Load data and convert to float32 BEFORE accumulation: `a = tl.load(A_ptrs, mask=a_mask, other=0.0).to(tl.float32)` - Accumulate in float32: `acc += tl.dot(a, b)` where `acc` is `dtype=tl.float32` - Example K-loop pattern: ```python k0 = 0 while k0 < K: k_idxs = k0 + offs_k A_ptrs = A_batch_ptr + (offs_m[:, None] * stride_am) + (k_idxs[None, :] * stride_ak) B_ptrs = B_batch_ptr + (k_idxs[:, None] * stride_bk) + (offs_n[None, :] * stride_bn) a_mask = (offs_m[:, None] < M) & (k_idxs[None, :] < K) b_mask = (offs_n[None, :] < N) & (k_idxs[:, None] < K) a = tl.load(A_ptrs, mask=a_mask, other=0.0).to(tl.float32) b = tl.load(B_ptrs, mask=b_mask, other=0.0).to(tl.float32) acc += tl.dot(a, b) k0 += BLOCK_K ``` **Solution.solve() Method:** - Read file directly using `Path(__file__).read_text()` (correct) - Do NOT use `inspect.getsource(sys.modules[__name__])` - fails when module is dynamically loaded (incorrect) - Example (correct): ```python def solve(self, spec_path: Optional[str] = None) -> Dict[str, str]: from pathlib import Path current_file = Path(__file__).resolve() return {"code": current_file.read_text(encoding="utf-8")} ``` **Performance Optimization Tips:** - Use FP32 accumulator for numerical stability: `acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)` - Load data as float32: `a = tl.load(...).to(tl.float32)` - critical for correctness - Cast to float16 only at the end: `tl.store(c_ptrs, acc.to(tl.float16), mask=c_mask)` - Consider using autotune to find optimal block sizes and warp configurations - Test with warmup phase to stabilize GPU clocks before benchmarking Scoring (0-100) --------------- Performance is measured against baseline implementations: ``` geometric_mean_speedup = geometric_mean(baseline_times / answer_times) raw_score = min(geometric_mean_speedup, 5.0) # Cap at 5x speedup score = (raw_score - 1.0) / 4.0 * 100 # Map 1x-5x to 0-100 ``` - 0 points = No speedup (1x baseline performance) - 25 points = 2x speedup over baseline - 50 points = 3x speedup over baseline - 75 points = 4x speedup over baseline - 100 points = 5x+ speedup over baseline Evaluation Details ------------------ - Tested on multiple batch sizes: B ∈ {64, 256, 1024} (default) - Fixed matrix dimensions: M=64, N=64, K=64 (configurable via metadata) - Can also test custom shapes specified in metadata - Correctness verified with tolerance: rtol=1e-2, atol=5e-3 - Performance measured using median execution time - Requires CUDA backend and GPU support - All tests must pass for any score > 0