Mixed GEMM Optimization Problem ================================= Problem Setting --------------- Design and optimize high-performance Triton kernels for Mixed GEMM (Linear + Bias + GELU) computation on GPU. This problem focuses on implementing efficient fused kernels that combine matrix multiplication, bias addition, and GELU activation using Triton's JIT compilation system. The challenge involves optimizing: - **Fused computation**: Efficiently combining linear layer (X @ W + B) with GELU activation - **Memory access patterns**: Efficient loading and storing of X, W, B tensors - **Mixed precision**: Handling float16 inputs/outputs with float32 bias and accumulation - **GELU activation**: Implementing efficient GELU computation using CUDA libdevice functions - **Block tiling**: Optimal block sizes for GPU execution across different matrix sizes - **Performance benchmarking**: Achieving speedup over baseline PyTorch implementations Target ------ - **Primary**: Maximize geometric mean speedup over baseline (higher is better) - **Secondary**: Ensure correctness across diverse matrix sizes - **Tertiary**: Minimize kernel launch overhead and memory usage API Specification ----------------- Implement a `Solution` class that returns a Triton kernel implementation: ```python class Solution: def solve(self, spec_path: str = None) -> dict: """ Returns a dict with either: - {"code": "python_code_string"} - {"program_path": "path/to/kernel.py"} """ # Your implementation pass ``` Your kernel implementation must provide: ```python import torch import triton import triton.language as tl def linear_gelu(X: torch.Tensor, W: torch.Tensor, B: torch.Tensor) -> torch.Tensor: """ Linear layer with GELU activation computation. Args: X: Input tensor of shape (M, K) - input features (float16) W: Weight tensor of shape (K, N) - weight matrix (float16) B: Bias tensor of shape (N,) - bias vector (float32) Returns: Output tensor of shape (M, N) - output with GELU activation (float16) """ # Your implementation pass ``` Input Specifications -------------------- - **X**: Input tensor of shape `(M, K)` where: - `M`: Batch size (tested with 512, 1024) - `K`: Input feature dimension (typically 4096) - dtype: `torch.float16` - **W**: Weight tensor of shape `(K, N)` where: - `N`: Output feature dimension (typically 4096) - dtype: `torch.float16` - **B**: Bias tensor of shape `(N,)` where: - dtype: `torch.float32` - All inputs are on CUDA device Output Specifications -------------------- - Output tensor of shape `(M, N)` matching the input batch and output feature dimensions - Output dtype: `torch.float16` - Output device: Same as input (CUDA) Correctness Requirements ------------------------ - Numerical correctness verified against PyTorch baseline implementation - Relative tolerance: 1e-2, Absolute tolerance: 5e-3 - All test cases must pass for any score above 0 - GELU activation must be correctly implemented Scoring (0-100) --------------- Performance is measured against GPU baseline implementations: ``` geometric_mean_gpu_time = geometric_mean(gpu_baseline_times) geometric_mean_answer_time = geometric_mean(answer_times) # Linear interpolation: 0 points = 1x GPU baseline, 100 points = 3x GPU baseline target_time_0 = geometric_mean_gpu_time # 0 points (1x GPU baseline) target_time_100 = geometric_mean_gpu_time / 3.0 # 100 points (3x speedup over GPU) score = 100 * (target_time_0 - geometric_mean_answer_time) / (target_time_0 - target_time_100) ``` - 0 points = 1x GPU baseline performance - 100 points = 3x speedup over GPU baseline - Score is linearly interpolated between these two points Note: Correctness is verified against GPU baseline, and scoring spans from 1x GPU baseline (0 points) to 3x GPU baseline (100 points). Evaluation Details ------------------ - Test cases: M = 512, 1024 (with N = 4096, K = 4096) - Warmup phase: 10 iterations to stabilize GPU clocks and caches - Random seed: Fixed seed (0) for reproducible data generation - Strict correctness: Any test failure results in score of 0 Additional Notes ---------------- - The benchmark uses float32 for PyTorch baseline (for numerical stability) but float16 for answer evaluation - GELU formula: gelu(x) = x * 0.5 * (1.0 + erf(x * 0.7071067811865476)) - Consider using CUDA libdevice erf function: `tl.extra.cuda.libdevice.erf` - Accumulation should use float32 for numerical stability - Bias addition should be done after matrix multiplication but before GELU