Symbolic Regression Benchmark - Ripple Dataset =============================================== Problem Setting --------------- Learn a closed-form symbolic expression `f(x1, x2)` that predicts the target `y`. This dataset is generated from a ripple-like function that combines polynomial amplitude modulation with high-frequency trigonometric oscillations. The function creates concentric wave patterns with varying intensity across the domain. Input Format ------------ - Your `Solution.solve` receives: - `X`: numpy.ndarray of shape `(n, 2)` containing feature values - `y`: numpy.ndarray of shape `(n,)` containing target values - Dataset columns: `x1, x2, y` Output Specification -------------------- Implement a `Solution` class in `solution.py`: ```python import numpy as np class Solution: def __init__(self, **kwargs): pass def solve(self, X: np.ndarray, y: np.ndarray) -> dict: """ Args: X: Feature matrix of shape (n, 2) y: Target values of shape (n,) Returns: dict with keys: - "expression": str, a Python-evaluable expression using x1, x2 - "predictions": list/array of length n (optional) - "details": dict with optional "complexity" int """ # Example: fit a symbolic expression to the data expression = "x1 + x2" # placeholder return { "expression": expression, "predictions": None, # will be computed from expression if omitted "details": {} } ``` Expression Requirements: - Must be a valid Python expression string - Use variable names: `x1`, `x2` - Allowed operators: `+`, `-`, `*`, `/`, `**` - Allowed functions: `sin`, `cos`, `exp`, `log` - Numeric constants are allowed Dependencies (pinned versions) ------------------------------ ``` pysr==0.19.0 numpy==1.26.4 pandas==2.2.2 sympy==1.13.3 ``` Minimal Working Examples ------------------------ **Example 1: Using PySR (recommended)** ```python import numpy as np from pysr import PySRRegressor class Solution: def __init__(self, **kwargs): pass def solve(self, X: np.ndarray, y: np.ndarray) -> dict: model = PySRRegressor( niterations=40, binary_operators=["+", "-", "*", "/"], unary_operators=["sin", "cos", "exp", "log"], populations=15, population_size=33, maxsize=25, verbosity=0, progress=False, random_state=42, ) model.fit(X, y, variable_names=["x1", "x2"]) # Get best expression as sympy, convert to string best_expr = model.sympy() expression = str(best_expr) # Predictions predictions = model.predict(X) return { "expression": expression, "predictions": predictions.tolist(), "details": {} } ``` **Example 2: Manual expression (simple baseline)** ```python import numpy as np class Solution: def __init__(self, **kwargs): pass def solve(self, X: np.ndarray, y: np.ndarray) -> dict: # Simple linear combination as baseline x1, x2 = X[:, 0], X[:, 1] # Fit coefficients via least squares A = np.column_stack([x1, x2, np.ones_like(x1)]) coeffs, _, _, _ = np.linalg.lstsq(A, y, rcond=None) a, b, c = coeffs expression = f"{a:.6f}*x1 + {b:.6f}*x2 + {c:.6f}" predictions = a * x1 + b * x2 + c return { "expression": expression, "predictions": predictions.tolist(), "details": {} } ``` PySR API Notes (v0.19.0) ------------------------ - `model.fit(X, y, variable_names=["x1", "x2"])` - use variable_names to match expected output - `model.sympy()` - returns best expression as sympy object - `model.predict(X)` - returns predictions array - `model.equations_` - DataFrame of all discovered equations - Common parameters: - `niterations`: number of evolution iterations (more = better but slower) - `populations`: number of parallel populations - `maxsize`: maximum expression complexity - `verbosity=0, progress=False`: suppress output Expression Format Requirements ------------------------------ - Must be a valid Python expression string - Use variable names: `x1`, `x2` - Allowed operators: `+`, `-`, `*`, `/`, `**` - Allowed functions: `sin`, `cos`, `exp`, `log` (NO `np.` prefix) - Numeric constants are allowed - The evaluator uses `sympy.sympify()` to parse your expression Scoring ------- ``` MSE = (1/n) Σ (y_i - ŷ_i)² Score = 100 × clamp((m_base - MSE) / (m_base - m_ref), 0, 1) × 0.99^max(C - C_ref, 0) ``` - `m_base`: linear regression baseline MSE - `m_ref`, `C_ref`: reference solution MSE and complexity - `C = 2 × (#binary ops) + (#unary ops)` - Lower MSE and lower complexity yield higher scores Environment ----------- Run `set_up_env.sh` to install dependencies.