| import Mathlib | |
| def solveAdd (a b:Int): Int | |
| := b-a | |
| theorem solveAdd_correct (a b: Int): a + (solveAdd a b) =b | |
| := by simp[solveAdd] | |
| def solveAdd0(a:Int): Int | |
| := -a | |
| theorem solveAdd0_correct(a: Int): a +(solveAdd0 a)=0 | |
| := by simp[solveAdd0] | |
| def solveSub(a b:Int): Int | |
| := a-b | |
| theorem solveSub_correct(a b:Int): a - (solveSub a b)=b | |
| := by simp[solveSub] | |
| def solve1x1(a b: Rat): Option Rat := | |
| if a = 0 then | |
| if b=0 then | |
| some 0 | |
| else | |
| none | |
| else | |
| some (b/a) | |
| theorem solve1x1_correct(a b:Rat): (∃ x, a*x=b) -> a * (solve1x1 a b).get! =b | |
| := by | |
| intro hsol | |
| simp[solve1x1] | |
| split_ifs | |
| next hb=>simp[hb] | |
| next ha hb=> simp[ha] at hsol; rw[hsol] at hb; contradiction | |
| next ha=> | |
| simp | |
| simp[Rat.div_def] | |
| simp[Rat.mul_comm b] | |
| simp[← Rat.mul_assoc] | |
| have: a*a.inv=1 :=by{ | |
| have hainv: a⁻¹ = a.inv :=by { | |
| exact rfl | |
| } | |
| rw[← hainv] | |
| rw[Rat.mul_inv_cancel] | |
| assumption | |
| } | |
| simp[this] | |
| theorem solve1x1_none(a b:Rat): (Not (∃ x, a*x=b)) -> solve1x1 a b=none | |
| := by | |
| intro h | |
| simp[solve1x1] | |
| split_ifs | |
| next ha hb=> simp[ha] at h;rw[hb] at h; contradiction | |
| next=>rfl | |
| next ha=> | |
| contrapose! h | |
| use b/a | |
| exact mul_div_cancel₀ b ha | |
| def solveMul(a: Rat): Rat | |
| := if a=0 then 0 else 1/a | |
| theorem solveMul_correct(a:Rat): (∃ x, a*x=1)->a * (solveMul a)=1 | |
| := by | |
| intro h | |
| simp[solveMul] | |
| split | |
| next ha=> | |
| simp[ha] at h | |
| next ha=> | |
| exact Rat.mul_inv_cancel a ha | |
| theorem solveMul_nosol (a:Rat): (Not (∃ x, a*x=1)) ->solveMul a =0 | |
| := by | |
| intro h | |
| simp[solveMul] | |
| contrapose! h | |
| use 1/a | |
| exact mul_one_div_cancel h | |
| def solveDiv(a b:Rat) (ha: a≠ 0)(hb: b≠ 0): Rat | |
| := a/b | |
| theorem solveDiv_correct(a b:Rat)(ha:a≠ 0)(hb: b≠ 0): | |
| a / (solveDiv a b ha hb)= b | |
| := by | |
| simp[solveDiv] | |
| rw[← div_mul] | |
| rw[div_self (by simp[ha])] | |
| simp | |
| def isPrime(a: Nat): Bool | |
| := | |
| if a<=1 then false | |
| else | |
| let rec helper (cur: Nat):Bool:= | |
| if cur>=a then true | |
| else if a%cur=0 then false | |
| else helper (cur+1) | |
| termination_by a-cur | |
| decreasing_by{ | |
| simp_wf | |
| have hacur: a>cur:=by omega | |
| exact Nat.sub_succ_lt_self a cur hacur | |
| } | |
| helper 2 | |
| theorem isPrime_correct(a: Nat): | |
| (isPrime a) <-> Nat.Prime a := by{ | |
| constructor | |
| · { | |
| unfold isPrime | |
| split | |
| simp | |
| have: ∀ cur:Nat, cur>=2->(∀x:Nat, (x>=2 ∧ x< cur)-> a%x !=0) ->isPrime.helper a cur ->a.Prime:=by { | |
| intro cur | |
| intro hcur2 | |
| induction cur using isPrime.helper.induct | |
| exact a | |
| next ha1 c hcga => | |
| have hhelp: isPrime.helper a c =true:=by { | |
| unfold isPrime.helper | |
| simp[hcga] | |
| } | |
| simp[hhelp] | |
| contrapose! | |
| intro hnp | |
| apply Nat.exists_dvd_of_not_prime2 at hnp | |
| rcases hnp with ⟨ k, hnp'⟩ | |
| use k | |
| simp[hnp'] | |
| omega | |
| omega | |
| next ha c hca hmod => | |
| have hhelp: isPrime.helper a c=false:=by{ | |
| unfold isPrime.helper | |
| simp[hmod,hca] | |
| } | |
| simp[hhelp] | |
| next ha c hca hmod ih => | |
| unfold isPrime.helper | |
| split | |
| simp | |
| have: c>=a :=by assumption | |
| contradiction | |
| have: c+1>=2 :=by omega | |
| simp[ this] at ih | |
| simp | |
| intro hx | |
| apply ih | |
| intro x | |
| intro hx2 | |
| intro hxlt | |
| cases hc1x: c-x | |
| have: c=x :=by { | |
| omega | |
| } | |
| rw[← this] | |
| assumption | |
| have: x<c :=by{ | |
| omega | |
| } | |
| apply hx | |
| assumption | |
| assumption | |
| } | |
| apply this | |
| omega | |
| intro x | |
| omega | |
| } | |
| next=> | |
| contrapose! | |
| unfold isPrime | |
| split | |
| simp | |
| have: a<=1 :=by assumption | |
| have ha2: a ≠ 2 :=by omega | |
| have ha3: a≠ 3 :=by omega | |
| intro hp | |
| have h5p: 5<=a :=by { | |
| exact Nat.Prime.five_le_of_ne_two_of_ne_three hp ha2 ha3 --Prime.five_le_of_ne_two_of_ne_three a hp ha2 ha3 | |
| } | |
| omega | |
| have: ∀cur: Nat, cur>=2 ->isPrime.helper a cur ≠ true ->¬ a.Prime :=by{ | |
| intro cur | |
| intro hcur2 | |
| induction cur using isPrime.helper.induct | |
| exact a | |
| next ha1 x hxa=> | |
| unfold isPrime.helper | |
| simp[hxa] | |
| next ha1 x hxa hmod => | |
| unfold isPrime.helper | |
| simp[hxa,hmod] | |
| have :x ∣ a :=by omega | |
| have hxneqa: x≠ a :=by omega | |
| have hxneq1: x≠ 1 :=by omega | |
| exact Nat.not_prime_of_dvd_of_ne this hxneq1 hxneqa | |
| next ha1 x hxa hmod ih=> | |
| unfold isPrime.helper | |
| simp[hxa,hmod] | |
| simp at ih | |
| apply ih | |
| omega | |
| } | |
| apply this | |
| omega | |
| } | |
| def modInv(a: Nat) (p:Nat)(hp:p.Prime): Option Nat | |
| := | |
| if a%p=0 then | |
| none | |
| else | |
| let expn:Nat := p-2 | |
| some ( (a^expn) %p) | |
| theorem modInv_correct(a:Nat) (p:Nat)(hp:p.Prime): | |
| (∃ x:Nat, (a*x)%p=1)->(a*(modInv a p hp).get!)%p=1 :=by{ | |
| intro hexist | |
| have han0: a%p ≠ 0:=by{ | |
| contrapose! hexist | |
| intro x | |
| have: (a*x)%p =(a%p *x)%p:=by{ | |
| simp[Nat.mod_mul_mod] | |
| --exact Eq.symm (Nat.mod_mul_mod a x ↑p) | |
| } | |
| rw[hexist] at this | |
| simp[this] | |
| } | |
| unfold modInv | |
| simp[han0] | |
| --simp[Option.get!] | |
| have hp2:p>=2 :=by{ | |
| exact Nat.Prime.two_le hp | |
| } | |
| have hm:a*a^(p-2)=a^(p-1) :=by{ | |
| calc | |
| a*a^(p-2)= a^1 *a^(p-2):=by {simp} | |
| _=a^(1+(p-2)) :=by{exact Eq.symm (Nat.pow_add a 1 (p - 2))} | |
| _=a^(p-1) :=by{ | |
| have: 1+(p-2)=p-1:=by omega | |
| exact congrArg (HPow.hPow a) this | |
| } | |
| } | |
| simp[hm] | |
| --Fermat's little theorem | |
| --from Mathlib.FieldTheory.Finite | |
| have hcop: IsCoprime (a:Int) p :=by{ | |
| refine Nat.isCoprime_iff_coprime.mpr ?_ | |
| have: ¬ p ∣ a :=by{omega} | |
| refine Nat.coprime_iff_isRelPrime.mpr ?_ | |
| have hrp:= (Irreducible.isRelPrime_iff_not_dvd hp).mpr this | |
| exact | |
| IsRelPrime.symm hrp | |
| } | |
| have:= Int.ModEq.pow_card_sub_one_eq_one hp hcop | |
| have pz:((a:Int)^(p-1))%(p:Int)=1%(p:Int):=by{ | |
| exact this | |
| } | |
| --contrapose this | |
| --intro hzmod | |
| have h1mp: 1%(p:Int)=1 :=by{ | |
| refine Int.emod_eq_of_lt ?H1 ?H2 | |
| omega | |
| omega | |
| } | |
| rw[h1mp] at pz | |
| norm_cast at pz | |
| } | |
| theorem modInv_none(a:Nat) (p:Nat)(hp:p.Prime): (Not (∃ x, (a*x)%p=1))-> modInv a p hp=none | |
| :=by | |
| intro h | |
| simp[modInv] | |
| contrapose! h | |
| refine Nat.exists_mul_emod_eq_one_of_coprime ?hkn ?hk | |
| refine Nat.coprime_iff_isRelPrime.mpr ?_ | |
| have: ¬ p ∣ a :=by{omega} | |
| have hrp:= (Irreducible.isRelPrime_iff_not_dvd hp).mpr this | |
| exact IsRelPrime.symm hrp | |
| exact Nat.Prime.one_lt hp | |
| def minFacT(a:Nat) (h: a>1) | |
| : {x:Nat//x>1∧ x ∣ a∧ Not (∃ y>1, y∣a ∧ y<x)} | |
| := | |
| let lst:= List.range (a+1) | |
| let res:=lst.find? (fun x=> x>1 ∧ x∣ a) | |
| have : res.isSome :=by{ | |
| refine (@List.find?_isSome _ lst fun x => decide (x > 1 ∧ x ∣ a)).mpr ?_ | |
| use a | |
| constructor | |
| exact List.self_mem_range_succ a | |
| simp[h] | |
| } | |
| let r:=res.get this | |
| ⟨r, by{ | |
| have hf:lst.find? (fun x=> x>1 ∧ x∣ a)=some r:=by{ | |
| exact Eq.symm (Option.some_get this) | |
| } | |
| have lem := @List.find?_range_eq_some (a+1) _ _|>.mp hf | |
| simp at lem | |
| constructor | |
| simp[lem.left] | |
| constructor | |
| simp[lem.left] | |
| have lr:=lem.right | |
| rcases lr with ⟨ _,lr'⟩ | |
| intro hy | |
| rcases hy with ⟨ y , hy'⟩ | |
| have:= lr' y hy'.2.2 | |
| rcases this <;> omega | |
| }⟩ | |
| def minFac(a:Nat) (h: a>1):Nat | |
| := minFacT a h | |
| theorem minFac_isfac(a:Nat)(h: a>1): ( (minFac a h) ∣ a) ∧ (minFac a h>1) | |
| :=by | |
| simp[minFac] | |
| let r:=minFacT a h | |
| simp[r.2] | |
| theorem minFac_ismin(a:Nat)(h:a>1): Not (∃ y>1,( y ∣ a) ∧ y<minFac a h) | |
| :=by | |
| simp[minFac] | |
| let r:=minFacT a h | |
| have:=r.2.2.2 | |
| intro x h1 hdvd | |
| simp at this | |
| have:=this x h1 hdvd | |
| simp[r,this] | |
| def midPoint (x1 y1 x2 y2: Rat):Rat × Rat | |
| :=((x1+x2)/2, (y1+y2)/2) | |
| def distSq( x1 y1 x2 y2: Rat):Rat:= | |
| (x1-x2)^2 + (y1-y2)^2 | |
| theorem midPoint_correct (x1 y1 x2 y2: Rat) | |
| : let (xmid,ymid) :=midPoint x1 y1 x2 y2 | |
| distSq xmid ymid x1 y1=distSq xmid ymid x2 y2 | |
| ∧ 4*(distSq xmid ymid x1 y1)=distSq x1 y1 x2 y2 | |
| :=by | |
| simp[midPoint,distSq] | |
| constructor <;> ring_nf | |
| def GCD (x y: Nat): Nat := | |
| if y = 0 then | |
| x | |
| else | |
| GCD y (x % y) | |
| termination_by y | |
| decreasing_by { | |
| simp_wf | |
| apply Nat.mod_lt _ | |
| refine Nat.zero_lt_of_ne_zero ?_ | |
| assumption | |
| } | |
| theorem gcd_is_div (x y: Nat): | |
| (p: x > 0)→ ((GCD x y) ∣ x) ∧ ((GCD x y) ∣ y) := match y with | |
| | 0 => by { | |
| simp[GCD] | |
| } | |
| | Nat.succ z =>by { | |
| have hyp: z.succ>0 := by { | |
| exact Nat.zero_lt_succ z | |
| } | |
| have ih := gcd_is_div z.succ (x % z.succ) | |
| have ihh := ih hyp | |
| have heq: GCD x z.succ = GCD z.succ (x%z.succ) :=by{ | |
| rw[GCD.eq_def] | |
| tauto | |
| } | |
| intro hx | |
| simp[heq, ihh] | |
| rcases ihh.right with ⟨k, ihh' ⟩ | |
| have hq: x = (GCD z.succ (x%z.succ))*k +z.succ*(x/z.succ) :=by{ | |
| rw[← ihh'] | |
| exact Eq.symm (Nat.mod_add_div x z.succ) | |
| } | |
| rcases ihh.left with ⟨ m, ihhl'⟩ | |
| use (x/z.succ) * m + k | |
| rw[Nat.mul_add] | |
| rw[Nat.mul_comm, Nat.mul_assoc] | |
| rw[Nat.mul_comm m] | |
| rw[← ihhl'] | |
| rw[Nat.mul_comm] | |
| rw[Nat.add_comm] | |
| have hz: z+1 = z.succ :=by omega | |
| rw[hz] | |
| omega | |
| } | |
| termination_by y | |
| decreasing_by { | |
| simp_wf | |
| apply Nat.mod_lt _ | |
| refine Nat.zero_lt_of_ne_zero ?_ | |
| tauto | |
| } | |
| theorem gcd_is_greatest (x y: Nat): | |
| (x>0) → Not (∃ z: Nat, z∣ x ∧ z∣ y ∧ z> GCD x y ) := match y with | |
| | 0 => by { | |
| have hgcd0: GCD x 0 = x :=by { | |
| simp[GCD] | |
| } | |
| intro hx | |
| intro hh | |
| rcases hh with ⟨z0, hh' ⟩ | |
| have hzx: z0 ≤ x :=by{ | |
| have hzdx: z0∣ x:=by {tauto} | |
| rcases hzdx with ⟨k, hzdx'⟩ | |
| have hk: k>0 :=by{ | |
| contrapose hx | |
| have hk0: k=0 := by omega | |
| have hx0: x=0:= by simp[hzdx', hk0] | |
| omega | |
| } | |
| have hkg1: k>=1:=by{omega} | |
| rw[hzdx'] | |
| have hz0: z0=z0*1:=by {omega} | |
| nth_rewrite 1 [hz0] | |
| exact Nat.mul_le_mul_left z0 hk | |
| } | |
| have: z0>GCD x 0:=by{tauto} | |
| rw[hgcd0] at this | |
| omega | |
| } | |
| | Nat.succ yy => by{ | |
| intro hx | |
| intro hh | |
| rcases hh with ⟨z0, hh' ⟩ | |
| have ih:=gcd_is_greatest yy.succ (x%yy.succ) | |
| have hyg0: yy.succ>0 :=by{omega} | |
| have ihh:= ih hyg0 | |
| have hgcd: GCD x yy.succ = GCD yy.succ (x%yy.succ) := by { | |
| rw[GCD.eq_def] | |
| tauto | |
| } | |
| contrapose! ihh | |
| use z0 | |
| have hzg: z0> GCD yy.succ (x%yy.succ):= by { | |
| omega | |
| } | |
| simp[hzg, hh'] | |
| have hzx: z0∣ x:=by tauto | |
| rcases hzx with ⟨ k, hzx'⟩ | |
| have hzy: z0 ∣ yy.succ :=by tauto | |
| rcases hzy with ⟨ m, hzy' ⟩ | |
| have hmod: x%yy.succ + yy.succ * (x/yy.succ) =x :=by{ | |
| exact Nat.mod_add_div x yy.succ | |
| } | |
| refine (Nat.dvd_mod_iff ?h.intro.intro.h).mpr ?h.intro.intro.a | |
| tauto | |
| tauto | |
| } | |
| termination_by y | |
| decreasing_by { | |
| simp_wf | |
| apply Nat.mod_lt _ | |
| refine Nat.zero_lt_of_ne_zero ?_ | |
| tauto | |
| } | |
| def solveProg(t:Nat):Nat | |
| := | |
| let rec loop (i:{i':Nat//¬ ∃ i'' < i',i''*(i''+1)>=t*2}) (acc:{a:Nat//a*2=i.val*(i.val+1)}) | |
| :{x:Nat//x*(x+1)>=t*2∧ ¬ ∃ y<x, y*(y+1)>=t*2}:= | |
| have ih:=acc.2 | |
| have iih:=i.2 | |
| if h:acc>=t then | |
| ⟨i, by constructor;omega;exact iih⟩ | |
| else | |
| have hi: Not (i.val*(i.val+1)>=t*2):=by{ | |
| rw[← ih] | |
| simp[h] | |
| } | |
| have: ¬∃ i'' < i.val + 1, i'' * (i'' + 1) ≥ t * 2:=by{ | |
| simp | |
| intro x hx | |
| by_cases x < i.val | |
| next hlt=> simp at iih; exact iih x hlt | |
| next hlt=> | |
| have : x=i:=by omega | |
| rw[this] | |
| simpa using hi | |
| } | |
| loop ⟨i.val+1,this⟩ ⟨acc.val+i.val+1, by ring_nf;rw[ih];ring⟩ | |
| termination_by t-acc | |
| decreasing_by{ | |
| simp_wf | |
| refine Nat.sub_lt_sub_left (by omega) (by omega) | |
| } | |
| loop ⟨ 0, by omega⟩ ⟨ 0, by simp⟩ | |
| theorem solveProg_isgeq(t:Nat): (solveProg t)*((solveProg t)+1) >= t*2 | |
| :=by | |
| simp[solveProg] | |
| have ih:=(solveProg.loop t ⟨ 0,by omega⟩ ⟨0, solveProg.proof_2⟩).2 | |
| omega | |
| theorem solveProg_ismin(t:Nat): Not (∃ y< (solveProg t), y*(y+1)>=t*2) | |
| :=by | |
| simp[solveProg] | |
| have ih:=(solveProg.loop t ⟨ 0,by omega⟩ ⟨0, solveProg.proof_2⟩).2 | |
| simp at ih | |
| exact ih.right | |
| def solveGeom(a t:Nat)(h:a>1):Nat | |
| := | |
| let rec loop (h:a>1)(i:{i':Nat//¬ ∃i'' < i',a^(i''+1)-1>=t*(a-1)})(acc:{acc':Nat//a^(i.val+1)-1=acc'*(a-1)}) | |
| :{x:Nat//a^(x+1)-1>=t*(a-1)∧ ¬∃ y<x,a^(y+1)-1>=t*(a-1)}:= | |
| have ih:=acc.2 | |
| have iih:=i.2 | |
| if hge:acc>=t then | |
| ⟨i, by rw [ih];constructor;exact Nat.mul_le_mul_right (a - 1) hge; exact iih⟩ | |
| else | |
| let newacc:=acc+a^(i.val+1) | |
| have : a^(i.val+2)-1=newacc *(a-1):=by{ | |
| ring_nf | |
| rw[← ih] | |
| ring_nf | |
| have : 0< a * a ^ i.val :=by refine Nat.mul_pos (by omega) (by refine Nat.pow_pos (by omega)) | |
| rw[← Nat.add_sub_assoc (by omega) (a * a ^ i.val * (a - 1))] | |
| ring_nf | |
| have: a * a ^ i.val+a * a ^ i.val * (a - 1) =a * a ^ i.val*a:=by{ | |
| have lem:=Nat.mul_one (a * a ^ i.val) | |
| nth_rewrite 1 [← lem] | |
| rw[← Nat.mul_add (a*a^i.val) 1] | |
| have: 1+(a-1)=a:=by omega | |
| rw[this] | |
| } | |
| rw[this] | |
| ring_nf | |
| } | |
| have hopt:¬∃ i'' < i.val + 1, a ^ (i'' + 1) - 1 ≥ t * (a - 1):=by{ | |
| simp | |
| intro x xh | |
| by_cases x < i.val | |
| next hlt=> simp at iih; exact iih x hlt | |
| next hlt=> | |
| have hxi: x=i :=by omega | |
| simp at hge | |
| rw[hxi,ih] | |
| refine Nat.mul_lt_mul_of_pos_right hge (by simp[h]) | |
| } | |
| loop h ⟨i.val+1, hopt⟩ ⟨newacc,this ⟩ | |
| termination_by t-acc | |
| decreasing_by{ | |
| simp_wf | |
| refine Nat.sub_lt_sub_left (by omega) ?_ | |
| have: a^(i.val+1)>0 :=by{ | |
| refine Nat.pow_pos (by omega) | |
| } | |
| omega | |
| } | |
| loop h ⟨0, by simp⟩ ⟨1, by ring_nf⟩ | |
| theorem solveGeom_isgeq(a t:Nat)(h:a>1): a^((solveGeom a t h)+1)-1 >=t*(a-1) | |
| :=by | |
| simp[solveGeom] | |
| have:=(solveGeom.loop a t h h ⟨0, by simp⟩ ⟨1, by ring_nf⟩).2 | |
| simp[this] | |
| theorem solveGeom_ismin(a t:Nat)(h:a>1): Not (∃ y<solveGeom a t h, a^(y+1)-1>= t*(a-1)) | |
| :=by | |
| simp[solveGeom] | |
| have:=(solveGeom.loop a t h h ⟨0, by simp⟩ ⟨1, by ring_nf⟩).2.2 | |
| simp at this | |
| exact this | |
| def solveSquare(t:Nat): Nat | |
| := | |
| let rec loop (i:{i':Nat//¬ ∃ i'' < i', i''*i''>=t}) | |
| :{x:Nat//x*x>=t∧ ¬ ∃ y<x, y*y>=t} := | |
| have iih:=i.2 | |
| if hcomp: i*i>=t then | |
| ⟨ i, by simp[hcomp];simp at iih;exact iih⟩ | |
| else | |
| loop ⟨i+1, | |
| by{ | |
| simp | |
| intro x hx | |
| by_cases x < i.val | |
| next hlt=> simp at iih; exact iih x hlt | |
| next hlt=> | |
| have hxi: x=i.val :=by omega | |
| rw[hxi] | |
| omega | |
| }⟩ | |
| termination_by t-i*i | |
| decreasing_by{ | |
| simp_wf | |
| refine Nat.sub_lt_sub_left (by omega) (by ring_nf;omega) | |
| } | |
| loop ⟨0, by simp⟩ | |
| theorem solveSquare_isgeq(t:Nat): (solveSquare t)*(solveSquare t)>=t | |
| :=by | |
| simp[solveSquare] | |
| have:=(solveSquare.loop t ⟨0, by simp⟩).2 | |
| simp[this] | |
| theorem solveSquare_ismin(t:Nat): Not (∃ y< (solveSquare t), y*y>=t) | |
| :=by | |
| simp[solveSquare] | |
| have:=(solveSquare.loop t ⟨0, by simp⟩).2.2 | |
| simp at this | |
| exact this | |
| def f[Monad m] (op: Nat->Nat->(m Nat)) (n: Nat): (m Nat) | |
| := | |
| match n with | |
| | 0 => pure 1 | |
| | 1 => pure 1 | |
| | n + 2 => | |
| do | |
| let x ← f op (n + 1) | |
| let y ← f op n | |
| op x y | |
| theorem f_base (op : Nat → Nat → Id Nat) : | |
| (f op 0 = pure 1) ∧ (f op 1 = pure 1) | |
| := by constructor <;> rfl | |
| theorem f_recursive (op : Nat → Nat → Id Nat) (n : Nat) : f op (n+2) =do {op (← f op (n+1)) (← f op n) } | |
| := by rfl | |
| def rev(xs: List Int): List Int | |
| := match xs with | |
| |[] => [] | |
| |h::t => (rev t) ++ [h] | |
| theorem reverse_correct(xs:List Int): | |
| xs.length=(rev xs).length ∧ | |
| ∀ i<xs.length, xs[i]! =(rev xs)[xs.length-1-i]! | |
| :=by{ | |
| induction xs | |
| next=>simp[rev] | |
| next h t ih=> | |
| constructor | |
| · { | |
| simp[rev,ih] | |
| } | |
| · { | |
| simp[rev] | |
| intro i | |
| have hlen: (rev t).length=t.length:=by{ | |
| simp [ih.left] | |
| } | |
| cases i with | |
| |zero=> | |
| simp | |
| have :t.length<(rev t ++[h]).length :=by{ | |
| exact List.get_of_append_proof rfl hlen | |
| } | |
| have hind:(rev t ++ [h])[t.length]! =(rev t ++ [h])[t.length] :=by{ | |
| exact getElem!_pos (rev t ++ [h]) t.length this | |
| } | |
| simp[hind] | |
| exact Eq.symm (List.getElem_concat_length (rev t) h t.length (id (Eq.symm hlen)) this) | |
| |succ i'=> | |
| simp | |
| have:= ih.right i' | |
| intro hi' | |
| simp[hi'] at this | |
| have hlind:t.length-1-i'=t.length - (i' + 1) :=by{ | |
| omega | |
| } | |
| have hh: (rev t)[t.length - 1 - i']! =(rev t ++ [h])[t.length - (i' + 1)]! :=by{ | |
| simp[hlind] | |
| have hlt:t.length - (i' + 1)<(rev t).length :=by{ | |
| simp[hlen] | |
| omega | |
| } | |
| have hl':(rev t)[t.length - (i' + 1)]! =(rev t)[t.length - (i' + 1)] :=by{ | |
| exact getElem!_pos (rev t) (t.length - (i' + 1)) hlt | |
| } | |
| have hrlen: (rev t ++ [h]).length>(rev t).length:=by { | |
| exact | |
| List.get_of_append_proof rfl rfl | |
| } | |
| have hrlt: t.length - (i' + 1)<(rev t ++ [h]).length :=by{ | |
| omega | |
| } | |
| have hr': (rev t ++ [h])[t.length - (i' + 1)]! =(rev t ++ [h])[t.length - (i' + 1)] :=by{ | |
| refine getElem!_pos (rev t ++[h]) (t.length - (i' + 1)) ?_ | |
| } | |
| simp[hr',hl'] | |
| refine Eq.symm (List.getElem_append_left (as:= rev t) (bs:=[h]) ?_) | |
| omega | |
| } | |
| omega | |
| } | |
| } | |
| def maxProp(xs:List Int)(x:Int):= | |
| x∈ xs ∧∀ y∈ xs, x≥ y | |
| def findMaxA (xs: List Int): Option <| Subtype <| maxProp xs := | |
| match hm: xs.attach with | |
| |[]=>none | |
| |h::t=> | |
| let rec helper (curr: {y//y∈ xs})(rest:List {y//y∈ xs}) | |
| :{y//y∈ xs ∧ ∀ y'∈ curr::rest, y'<=y}:= | |
| match rest with | |
| |[]=> ⟨curr, by simp[maxProp,curr.2]⟩ | |
| |rh::rt=> | |
| let newmax:= if rh.val>curr.val then rh else curr | |
| let r:=helper newmax rt | |
| have ih:=r.2 | |
| have ihr:=ih.right | |
| ⟨ r, by { | |
| simp[ih] | |
| have:=ihr newmax (by simp) | |
| have hgeq: newmax.val>=curr.val∧ newmax.val >=rh.val:=by{ | |
| simp[newmax] | |
| split <;> constructor<;> try simp | |
| next hsplit=> exact le_of_lt hsplit | |
| next hsplit=>simp at hsplit; exact hsplit | |
| } | |
| constructor | |
| omega | |
| constructor | |
| omega | |
| intro a b hab | |
| have:=ihr ⟨ a,b⟩ (by simp[hab]) | |
| simp[this] | |
| }⟩ | |
| let res:=helper h t | |
| have ih:=res.2 | |
| have ihr:=ih.right | |
| some ⟨ res, by { | |
| simp[maxProp,ih] | |
| intro y yh | |
| let yy:{x//x∈xs}:=⟨ y,yh⟩ | |
| have hin:yy∈ h::t :=by{ | |
| rw[← hm] | |
| exact List.mem_attach xs yy | |
| } | |
| have:= ihr yy hin | |
| simp[this] | |
| }⟩ | |
| def findMax (xs : List Int) : Option Int | |
| := match xs with | |
| |[]=>none | |
| |h::t=> findMaxA (h::t) | |
| theorem findMax_correct(x: Int) (xs : List Int): | |
| ∃ max∈ (x::xs), | |
| And (findMax (x::xs) = some max) (∀ y ∈ (x::xs) , y ≤ max) | |
| :=by | |
| simp only[findMax,pure] | |
| have hsome: findMaxA (x::xs)|>.isSome :=by exact rfl | |
| match hm: findMaxA (x::xs) with | |
| |none=>contradiction | |
| |some y=> | |
| use y | |
| simp | |
| have:=y.2 | |
| simp[maxProp] at this | |
| exact this | |
| theorem findMax_base : findMax [] = none | |
| :=by | |
| unfold findMax | |
| simp only [findMaxA] | |
| abbrev minSol(xs:List Int):= | |
| {x:Int//x∈xs ∧ ∀ y∈ xs, y>=x} | |
| def findMinTyped (xs : List Int) | |
| : {r:Option (minSol xs) // r=none ↔ xs=[]} | |
| :=match hm:xs with | |
| |[]=> ⟨ none, by simp⟩ | |
| |h::t=> | |
| let rest:=findMinTyped t | |
| match hr: rest with | |
| |⟨ none, hn⟩ => | |
| let sol:minSol (h::t) :=⟨ h, by simp[hm]; simp at hn; simp[hn] ⟩ | |
| ⟨ some sol, by simp ⟩ | |
| |⟨some r,_⟩ => | |
| let newmin:{y:Int//y∈ h::t∧ y≤ h ∧ y≤ r}:=if hcomp:h<r then ⟨h,by simp;omega⟩ else ⟨r,by simp[r.2];omega⟩ | |
| have ih:=r.2 | |
| let sol:minSol (h::t):= | |
| ⟨ newmin, | |
| by constructor;exact newmin.2.left;simp[newmin.2];intro a ha;have:=ih.right a ha; omega | |
| ⟩ | |
| ⟨ some sol, by simp⟩ | |
| def findMin (xs:List Int):Option Int | |
| :=match xs with | |
| |[]=>none | |
| |h::t=>findMinTyped (h::t) |>.val | |
| theorem findMin_correct(x: Int) (xs : List Int): | |
| ∃ min∈ (x::xs), | |
| And (findMin (x::xs) = some min) (∀ y ∈ (x::xs) , y >= min) | |
| :=by | |
| simp only [findMin,pure] | |
| --have hsome: findMinTyped (x::xs)|>.val.isSome :=by sorry | |
| match hm: findMinTyped (x::xs) with | |
| |⟨ none, hn⟩ =>simp at hn | |
| |⟨ some y,_⟩ => | |
| use y | |
| simp | |
| have :=y.2 | |
| constructor;simpa using this.left;simpa using this.right | |
| theorem findMin_base : findMin [] = none | |
| :=by exact rfl | |
| def isIn (x:Int) (xs: List Int):Bool | |
| := match xs with | |
| |[] => false | |
| |h::t => x==h || isIn x t | |
| def isIn_correct (x:Int)(xs:List Int): | |
| isIn x xs = true ↔ x∈ xs := by{ | |
| induction xs with | |
| |nil=> simp[isIn] | |
| |cons h t ih=> simp[isIn,ih] | |
| } | |
| def countEq (x:Int)(xs:List Int):Nat | |
| := match xs with | |
| |[]=>0 | |
| |h::t => | |
| let c:= if h=x then 1 else 0 | |
| (countEq x t) + c | |
| def countEq_correct (x:Int)(xs:List Int): | |
| List.count x xs = countEq x xs | |
| :=by{ | |
| induction xs with | |
| |nil =>rfl | |
| |cons h t ih=> | |
| simp[countEq] | |
| have lem:=List.count_cons x h t | |
| rw[← ih] | |
| rw[lem] | |
| simp | |
| } | |
| def findIfT(xs:List Int)(p:Int->Bool) | |
| :{oi:Option Int// | |
| if (∃ x∈ xs, p x) then ∃ y∈ xs, oi=some y ∧ p y | |
| else oi=none} | |
| :=match xs with | |
| |[]=>⟨ none, by exact rfl⟩ | |
| |h::t=> | |
| if hp: (p h=true) then | |
| ⟨ some h, by simp[hp]⟩ | |
| else | |
| let rest:=findIfT t p | |
| ⟨ rest, by simp[hp,rest.2]⟩ | |
| def findIf(xs:List Int)(p:Int->Bool):Option Int | |
| :=findIfT xs p | |
| theorem findIf_some(xs:List Int)(p:Int->Bool): | |
| (∃ x∈ xs, p x) -> ∃ y∈ xs, findIf xs p=some y ∧ p y | |
| :=by | |
| simp only [findIf] | |
| have:=(findIfT xs p).2 | |
| intro h | |
| simp[h] at this | |
| exact this | |
| theorem findIf_none(xs:List Int)(p:Int->Bool): | |
| (¬ ∃ y∈ xs, p y =true)-> findIf xs p=none | |
| :=by | |
| simp only [findIf] | |
| have:=(findIfT xs p).2 | |
| intro h | |
| simp[h] at this | |
| exact this | |
| def filterIf(xs:List Int)(p:Int->Bool):List Int | |
| := | |
| match xs with | |
| |[] => [] | |
| |h::t => | |
| if p h then | |
| h::(filterIf t p) | |
| else | |
| filterIf t p | |
| theorem filterIf_correct(xs:List Int)(p:Int->Bool): | |
| filterIf xs p = List.filter p xs | |
| :=by | |
| induction xs with | |
| |nil=> simp[filterIf] | |
| |cons h t ih=> | |
| simp[List.filter_cons] | |
| simp[filterIf] | |
| rw[ih] | |
| def mapInt(xs:List Int)(f:Int->Int):List Int | |
| :=match xs with | |
| |[]=>[] | |
| |h::t=> (f h) :: (mapInt t f) | |
| theorem mapInt_correct(xs:List Int)(f:Int->Int) | |
| : (mapInt xs f).length=xs.length | |
| ∧ ∀ i:Fin xs.length, (mapInt xs f)[i]! = f xs[i] | |
| :=by | |
| induction xs with | |
| |nil=>simp[mapInt] | |
| |cons h t ih=> | |
| have hsize:(mapInt (h :: t) f).length = (h :: t).length :=by{ | |
| simp[mapInt,ih] | |
| } | |
| constructor | |
| · exact hsize | |
| · { | |
| intro i | |
| have hil:i<(mapInt (h :: t) f).length :=by{ | |
| simp[hsize] | |
| } | |
| have: (mapInt (h :: t) f)[i]! =(mapInt (h :: t) f)[i] :=by{ | |
| exact getElem!_pos (mapInt (h :: t) f) i hil | |
| } | |
| rw[this] | |
| rcases i with ⟨i',hi⟩ | |
| cases i' | |
| next=> | |
| simp[mapInt] | |
| next n=> | |
| simp[mapInt] | |
| have:=ih.right ⟨ n,by simp at hi;exact hi⟩ | |
| simp at this | |
| rw[← this] | |
| symm | |
| exact getElem!_pos (mapInt t f) n (by simp at hi; omega) | |
| } | |
| def isPrefix (p xs:List α):= | |
| List.take p.length xs = p | |
| /- longest common prefix for a pair of lists-/ | |
| def lcpPair(xs ys:List Int ) | |
| :{zs:List Int//isPrefix zs xs∧ isPrefix zs ys | |
| ∧ (∀zz, isPrefix zz xs∧ isPrefix zz ys->zz.length<=zs.length)} | |
| :=match xs,ys with | |
| |[],_=>⟨ [],by simp[isPrefix]⟩ | |
| |_,[]=>⟨ [],by simp[isPrefix]⟩ | |
| |xh::xt, yh::yt=> | |
| if heq: xh=yh then | |
| let rest:=lcpPair xt yt | |
| ⟨ xh:: rest, | |
| by{ | |
| have:=rest.2 | |
| constructor | |
| · simpa[isPrefix,rest,heq] using this.1 | |
| · { | |
| constructor | |
| · simpa[isPrefix,rest,heq] using this.2.1 | |
| ·{ | |
| intros zz hxy | |
| cases zz | |
| next=> | |
| have: ([]:List Int).length=0:=by exact rfl | |
| rw[this] | |
| omega | |
| next h t=> | |
| simp[isPrefix] at hxy | |
| have ih:=this.2.2 | |
| have ht:isPrefix t xt∧ isPrefix t yt:=by { | |
| simp[isPrefix,hxy] | |
| } | |
| have ihh:=ih _ ht | |
| simp[ihh] | |
| } | |
| } | |
| } | |
| ⟩ | |
| else | |
| ⟨ [], | |
| by { | |
| simp[isPrefix] | |
| intros zz hx hy | |
| cases zz | |
| next=>rfl | |
| next h t=> | |
| simp at hx | |
| simp at hy | |
| have : xh=yh :=by simp[hx,hy] | |
| contradiction | |
| } | |
| ⟩ | |