Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
text
Languages:
English
Size:
10K - 100K
Tags:
math
License:
| bthis O | |
| is O | |
| called O | |
| a O | |
| linear B-Math | |
| model I-Math | |
| or O | |
| firstorder O | |
| approximatio O | |
| or O | |
| firstorder B-Math | |
| approximation I-Math | |
| it O | |
| also O | |
| provides O | |
| the O | |
| foundation O | |
| and O | |
| theoretical O | |
| framework O | |
| that O | |
| underlies O | |
| the O | |
| fourier B-Math | |
| transform I-Math | |
| and O | |
| related O | |
| method O | |
| for O | |
| example O | |
| the O | |
| collection O | |
| of O | |
| all O | |
| possible O | |
| linear B-Math | |
| combinations I-Math | |
| of O | |
| the O | |
| vectors O | |
| on O | |
| the O | |
| lefthand O | |
| side O | |
| is O | |
| called O | |
| their O | |
| span O | |
| and O | |
| the O | |
| equations O | |
| have O | |
| a O | |
| solution O | |
| just O | |
| when O | |
| the O | |
| righthand O | |
| vector O | |
| is O | |
| within O | |
| that O | |
| spa O | |
| of O | |
| the O | |
| vectors B-Math | |
| on O | |
| the O | |
| lefthand O | |
| side O | |
| is O | |
| called O | |
| their O | |
| span O | |
| and O | |
| the O | |
| equations O | |
| have O | |
| a O | |
| solution O | |
| just O | |
| when O | |
| the O | |
| righthand O | |
| vector O | |
| is O | |
| within O | |
| that O | |
| spa O | |
| the O | |
| coefficients O | |
| of O | |
| this O | |
| linear O | |
| combination O | |
| are O | |
| referred O | |
| to O | |
| as O | |
| components B-Math | |
| or O | |
| coordinates O | |
| of O | |
| the O | |
| vector O | |
| with O | |
| respect O | |
| to O | |
| or O | |
| coordinates B-Math | |
| of O | |
| the O | |
| vector O | |
| with O | |
| respect O | |
| to O | |
| linear B-Math | |
| combination I-Math | |
| are O | |
| referred O | |
| to O | |
| as O | |
| components O | |
| or O | |
| coordinates O | |
| of O | |
| the O | |
| vector O | |
| with O | |
| respect O | |
| to O | |
| for O | |
| nonlinear B-Math | |
| systems I-Math | |
| this O | |
| interaction O | |
| is O | |
| often O | |
| approximated O | |
| by O | |
| linear O | |
| function O | |
| this O | |
| interaction O | |
| is O | |
| often O | |
| approximated O | |
| by O | |
| linear B-Math | |
| functions I-Math | |
| in O | |
| the O | |
| theory O | |
| of O | |
| vector B-Math | |
| spaces I-Math | |
| a O | |
| set O | |
| of O | |
| vectors O | |
| is O | |
| said O | |
| to O | |
| be O | |
| linearly O | |
| independent O | |
| if O | |
| there O | |
| exists O | |
| no O | |
| nontrivial O | |
| linear O | |
| combination O | |
| of O | |
| the O | |
| vectors O | |
| that O | |
| equals O | |
| the O | |
| zero O | |
| vecto O | |
| a O | |
| set O | |
| of O | |
| vectors B-Math | |
| is O | |
| said O | |
| to O | |
| be O | |
| linearly O | |
| independent O | |
| if O | |
| there O | |
| exists O | |
| no O | |
| nontrivial O | |
| linear O | |
| combination O | |
| of O | |
| the O | |
| vectors O | |
| that O | |
| equals O | |
| the O | |
| zero O | |
| vecto O | |
| is O | |
| said O | |
| to O | |
| be O | |
| linearly B-Math | |
| independent I-Math | |
| if O | |
| there O | |
| exists O | |
| no O | |
| nontrivial O | |
| linear O | |
| combination O | |
| of O | |
| the O | |
| vectors O | |
| that O | |
| equals O | |
| the O | |
| zero O | |
| vecto O | |
| if O | |
| there O | |
| exists O | |
| no O | |
| nontrivial O | |
| linear B-Math | |
| combination I-Math | |
| of O | |
| the O | |
| vectors O | |
| that O | |
| equals O | |
| the O | |
| zero O | |
| vecto O | |
| in O | |
| mathematics B-Math | |
| he O | |
| linear O | |
| span O | |
| also O | |
| called O | |
| the O | |
| linear O | |
| hull O | |
| or O | |
| just O | |
| span O | |
| of O | |
| a O | |
| set O | |
| s O | |
| of O | |
| vectors O | |
| from O | |
| a O | |
| vector O | |
| space O | |
| denoted O | |
| spans O | |
| is O | |
| defined O | |
| as O | |
| the O | |
| set O | |
| of O | |
| all O | |
| linear O | |
| combinations O | |
| of O | |
| the O | |
| vectors O | |
| in O | |
| s O | |
| for O | |
| example O | |
| two O | |
| linearly O | |
| independent O | |
| vectors O | |
| span O | |
| a O | |
| plan O | |
| he O | |
| linear B-Math | |
| span I-Math | |
| also O | |
| called O | |
| the O | |
| linear O | |
| hull O | |
| or O | |
| just O | |
| span O | |
| of O | |
| a O | |
| set O | |
| s O | |
| of O | |
| vectors O | |
| from O | |
| a O | |
| vector O | |
| space O | |
| denoted O | |
| spans O | |
| is O | |
| defined O | |
| as O | |
| the O | |
| set O | |
| of O | |
| all O | |
| linear O | |
| combinations O | |
| of O | |
| the O | |
| vectors O | |
| in O | |
| s O | |
| for O | |
| example O | |
| two O | |
| linearly O | |
| independent O | |
| vectors O | |
| span O | |
| a O | |
| plan O | |
| also O | |
| called O | |
| the O | |
| linear B-Math | |
| hull I-Math | |
| or O | |
| just O | |
| span O | |
| of O | |
| a O | |
| set O | |
| s O | |
| of O | |
| vectors O | |
| from O | |
| a O | |
| vector O | |
| space O | |
| denoted O | |
| spans O | |
| is O | |
| defined O | |
| as O | |
| the O | |
| set O | |
| of O | |
| all O | |
| linear O | |
| combinations O | |
| of O | |
| the O | |
| vectors O | |
| in O | |
| s O | |
| for O | |
| example O | |
| two O | |
| linearly O | |
| independent O | |
| vectors O | |
| span O | |
| a O | |
| plan O | |
| however O | |
| many O | |
| of O | |
| the O | |
| principles O | |
| are O | |
| also O | |
| valid O | |
| for O | |
| infinitedimensional O | |
| vector B-Math | |
| spaces I-Math | |
| also O | |
| functional B-Math | |
| analysis I-Math | |
| a O | |
| branch O | |
| of O | |
| mathematical O | |
| analysis O | |
| may O | |
| be O | |
| viewed O | |
| as O | |
| the O | |
| application O | |
| of O | |
| linear O | |
| algebra O | |
| to O | |
| function O | |
| space O | |
| a O | |
| branch O | |
| of O | |
| mathematical O | |
| analysis O | |
| may O | |
| be O | |
| viewed O | |
| as O | |
| the O | |
| application O | |
| of O | |
| linear B-Math | |
| algebra I-Math | |
| to O | |
| function O | |
| space O | |
| in O | |
| mathematics O | |
| physics O | |
| and O | |
| engineering O | |
| a O | |
| euclidean O | |
| vector O | |
| or O | |
| simply O | |
| a O | |
| vector O | |
| sometimes O | |
| called O | |
| a O | |
| geometric B-Math | |
| vector I-Math | |
| or O | |
| spatial O | |
| vector O | |
| is O | |
| a O | |
| geometric O | |
| object O | |
| that O | |
| has O | |
| magnitude O | |
| or O | |
| length O | |
| and O | |
| directio O | |
| or O | |
| spatial O | |
| vector O | |
| is O | |
| a O | |
| geometric O | |
| object O | |
| that O | |
| has O | |
| magnitude B-Attributes | |
| or O | |
| length O | |
| and O | |
| directio O | |
| or O | |
| length B-Attributes | |
| and O | |
| directio O | |
| and O | |
| direction B-Attributes | |
| here O | |
| in O | |
| general O | |
| means O | |
| that O | |
| a O | |
| different O | |
| behavior O | |
| may O | |
| occur O | |
| for O | |
| specific B-Math | |
| values I-Math | |
| of O | |
| the O | |
| coefficients O | |
| of O | |
| the O | |
| equation O | |
| multilinear B-Math | |
| maps I-Math | |
| t O | |
| vn O | |
| f O | |
| can O | |
| be O | |
| described O | |
| via O | |
| tensor O | |
| products O | |
| of O | |
| elements O | |
| of O | |
| t O | |
| vn O | |
| f O | |
| can O | |
| be O | |
| described O | |
| via O | |
| tensor B-Math | |
| products O | |
| of O | |
| elements O | |
| of O | |
| a O | |
| vector B-Math | |
| is O | |
| what O | |
| is O | |
| needed O | |
| to O | |
| carry O | |
| the O | |
| point O | |
| a O | |
| to O | |
| the O | |
| point O | |
| b O | |
| the O | |
| latin O | |
| word O | |
| vector O | |
| means O | |
| carrie O | |
| the O | |
| application O | |
| of O | |
| linear B-Math | |
| algebra I-Math | |
| in O | |
| this O | |
| context O | |
| is O | |
| vital O | |
| for O | |
| the O | |
| design O | |
| and O | |
| operation O | |
| of O | |
| modern O | |
| power O | |
| systems O | |
| including O | |
| renewable O | |
| energy O | |
| sources O | |
| and O | |
| smart O | |
| grid O | |
| one O | |
| may O | |
| thus O | |
| replace O | |
| the O | |
| field O | |
| of O | |
| scalars O | |
| by O | |
| a O | |
| ring B-Math | |
| r O | |
| and O | |
| this O | |
| gives O | |
| the O | |
| structure O | |
| called O | |
| a O | |
| module O | |
| over O | |
| r O | |
| or O | |
| rmodul O | |
| when O | |
| the O | |
| scalar O | |
| field O | |
| is O | |
| the O | |
| real O | |
| numbers O | |
| the O | |
| vector B-Math | |
| space I-Math | |
| is O | |
| called O | |
| a O | |
| real O | |
| vector O | |
| space O | |
| and O | |
| when O | |
| the O | |
| scalar O | |
| field O | |
| is O | |
| the O | |
| complex O | |
| numbers O | |
| the O | |
| vector O | |
| space O | |
| is O | |
| called O | |
| a O | |
| complex O | |
| vector O | |
| spac O | |
| is O | |
| called O | |
| a O | |
| real O | |
| vector O | |
| space O | |
| and O | |
| when O | |
| the O | |
| scalar O | |
| field O | |
| is O | |
| the O | |
| complex O | |
| numbers O | |
| the O | |
| vector O | |
| space O | |
| is O | |
| called O | |
| a O | |
| complex B-Math | |
| vector I-Math | |
| space I-Math | |
| real B-Math | |
| vector I-Math | |
| space I-Math | |
| and O | |
| when O | |
| the O | |
| scalar O | |
| field O | |
| is O | |
| the O | |
| complex O | |
| numbers O | |
| the O | |
| vector O | |
| space O | |
| is O | |
| called O | |
| a O | |
| complex O | |
| vector O | |
| spac O | |
| computational O | |
| algorithms O | |
| for O | |
| finding O | |
| the O | |
| solutions O | |
| are O | |
| an O | |
| important O | |
| part O | |
| of O | |
| numerical O | |
| linear B-Math | |
| algebra I-Math | |
| and O | |
| play O | |
| a O | |
| prominent O | |
| role O | |
| in O | |
| engineering O | |
| physics O | |
| chemistry O | |
| computer O | |
| science O | |
| and O | |
| economic O | |
| solutions B-Math | |
| are O | |
| an O | |
| important O | |
| part O | |
| of O | |
| numerical O | |
| linear O | |
| algebra O | |
| and O | |
| play O | |
| a O | |
| prominent O | |
| role O | |
| in O | |
| engineering O | |
| physics O | |
| chemistry O | |
| computer O | |
| science O | |
| and O | |
| economic O | |
| in O | |
| the O | |
| first O | |
| case O | |
| the O | |
| dimension B-Math | |
| of O | |
| the O | |
| solution O | |
| set O | |
| is O | |
| in O | |
| general O | |
| equal O | |
| to O | |
| n O | |
| m O | |
| where O | |
| n O | |
| is O | |
| the O | |
| number O | |
| of O | |
| variables O | |
| and O | |
| m O | |
| is O | |
| the O | |
| number O | |
| of O | |
| equation O | |
| of O | |
| the O | |
| solution B-Math | |
| set I-Math | |
| is O | |
| in O | |
| general O | |
| equal O | |
| to O | |
| n O | |
| m O | |
| where O | |
| n O | |
| is O | |
| the O | |
| number O | |
| of O | |
| variables O | |
| and O | |
| m O | |
| is O | |
| the O | |
| number O | |
| of O | |
| equation O | |
| is O | |
| in O | |
| general O | |
| equal O | |
| to O | |
| n O | |
| m O | |
| where O | |
| n O | |
| is O | |
| the O | |
| number O | |
| of O | |
| variables O | |
| and O | |
| m O | |
| is O | |
| the O | |
| number O | |
| of O | |
| equations B-Math | |
| variables B-Math | |
| and O | |
| m O | |
| is O | |
| the O | |
| number O | |
| of O | |
| equation O | |
| in O | |
| the O | |
| case O | |
| of O | |
| linear B-Math | |
| differential I-Math | |
| equations I-Math | |
| this O | |
| means O | |
| that O | |
| there O | |
| are O | |
| no O | |
| constant O | |
| term O | |
| furthermore O | |
| linear B-Math | |
| algebra I-Math | |
| plays O | |
| a O | |
| crucial O | |
| role O | |
| in O | |
| thermal O | |
| energy O | |
| systems O | |
| particularly O | |
| in O | |
| power O | |
| systems O | |
| analysi O | |
| plays O | |
| a O | |
| crucial O | |
| role O | |
| in O | |
| thermal B-Attributes | |
| energy I-Attributes | |
| systems I-Attributes | |
| particularly O | |
| in O | |
| power O | |
| systems O | |
| analysi O | |
| vector B-Math | |
| spaces I-Math | |
| that O | |
| are O | |
| not O | |
| finite O | |
| dimensional O | |
| often O | |
| require O | |
| additional O | |
| structure O | |
| to O | |
| be O | |
| tractabl O | |
| the O | |
| historical O | |
| roots O | |
| of O | |
| functional B-Math | |
| analysis I-Math | |
| lie O | |
| in O | |
| the O | |
| study O | |
| of O | |
| spaces O | |
| of O | |
| functions O | |
| and O | |
| the O | |
| formulation O | |
| of O | |
| properties O | |
| of O | |
| transformations O | |
| of O | |
| functions O | |
| such O | |
| as O | |
| the O | |
| fourier O | |
| transform O | |
| as O | |
| transformations O | |
| defining O | |
| for O | |
| example O | |
| continuous O | |
| or O | |
| unitary O | |
| operators O | |
| between O | |
| function O | |
| space O | |
| lie O | |
| in O | |
| the O | |
| study O | |
| of O | |
| spaces O | |
| of O | |
| functions O | |
| and O | |
| the O | |
| formulation O | |
| of O | |
| properties O | |
| of O | |
| transformations O | |
| of O | |
| functions O | |
| such O | |
| as O | |
| the O | |
| fourier B-Math | |
| transform I-Math | |
| as O | |
| transformations O | |
| defining O | |
| for O | |
| example O | |
| continuous O | |
| or O | |
| unitary O | |
| operators O | |
| between O | |
| function O | |
| space O | |
| as O | |
| transformations O | |
| defining O | |
| for O | |
| example O | |
| continuous O | |
| or O | |
| unitary B-Math | |
| operators I-Math | |
| between O | |
| function O | |
| space O | |
| in O | |
| general O | |
| there O | |
| is O | |
| not O | |
| such O | |
| a O | |
| complete O | |
| classification O | |
| for O | |
| modules B-Math | |
| even O | |
| if O | |
| one O | |
| restricts O | |
| oneself O | |
| to O | |
| finitely O | |
| generated O | |
| module O | |
| there O | |
| is O | |
| a O | |
| strong O | |
| relationship O | |
| between O | |
| linear B-Math | |
| algebra I-Math | |
| and O | |
| geometry O | |
| which O | |
| started O | |
| with O | |
| the O | |
| introduction O | |
| by O | |
| rené O | |
| descartes O | |
| in O | |
| of O | |
| cartesian O | |
| coordinate O | |
| and O | |
| geometry B-Math | |
| which O | |
| started O | |
| with O | |
| the O | |
| introduction O | |
| by O | |
| rené O | |
| descartes O | |
| in O | |
| of O | |
| cartesian O | |
| coordinate O | |
| a O | |
| linear B-Math | |
| endomorphism I-Math | |
| is O | |
| a O | |
| linear O | |
| map O | |
| that O | |
| maps O | |
| a O | |
| vector O | |
| space O | |
| v O | |
| to O | |
| itsel O | |
| is O | |
| a O | |
| linear B-Math | |
| map I-Math | |
| that O | |
| maps O | |
| a O | |
| vector O | |
| space O | |
| v O | |
| to O | |
| itsel O | |
| that O | |
| maps O | |
| a O | |
| vector B-Math | |
| space I-Math | |
| v O | |
| to O | |
| itsel O | |
| the O | |
| determinant B-Math | |
| of O | |
| a O | |
| square O | |
| matrix O | |
| is O | |
| a O | |
| number O | |
| associated O | |
| to O | |
| the O | |
| matrix O | |
| which O | |
| is O | |
| fundamental O | |
| for O | |
| the O | |
| study O | |
| of O | |
| a O | |
| square O | |
| matrix O | |
| for O | |
| example O | |
| a O | |
| square O | |
| matrix O | |
| is O | |
| invertible O | |
| if O | |
| and O | |
| only O | |
| if O | |
| it O | |
| has O | |
| a O | |
| nonzero O | |
| determinant O | |
| and O | |
| the O | |
| eigenvalues O | |
| of O | |
| a O | |
| square O | |
| matrix O | |
| are O | |
| the O | |
| roots O | |
| of O | |
| a O | |
| polynomial O | |
| determinan O | |
| of O | |
| a O | |
| square B-Math | |
| matrix I-Math | |
| is O | |
| a O | |
| number O | |
| associated O | |
| to O | |
| the O | |
| matrix O | |
| which O | |
| is O | |
| fundamental O | |
| for O | |
| the O | |
| study O | |
| of O | |
| a O | |
| square O | |
| matrix O | |
| for O | |
| example O | |
| a O | |
| square O | |
| matrix O | |
| is O | |
| invertible O | |
| if O | |
| and O | |
| only O | |
| if O | |
| it O | |
| has O | |
| a O | |
| nonzero O | |
| determinant O | |
| and O | |
| the O | |
| eigenvalues O | |
| of O | |
| a O | |
| square O | |
| matrix O | |
| are O | |
| the O | |
| roots O | |
| of O | |
| a O | |
| polynomial O | |
| determinan O | |
| is O | |
| a O | |
| number O | |
| associated O | |
| to O | |
| the O | |
| matrix O | |
| which O | |
| is O | |
| fundamental O | |
| for O | |
| the O | |
| study O | |
| of O | |
| a O | |
| square O | |
| matrix O | |
| for O | |
| example O | |
| a O | |
| square O | |
| matrix O | |
| is O | |
| invertible O | |
| if O | |
| and O | |
| only O | |
| if O | |
| it O | |
| has O | |
| a O | |
| nonzero O | |
| determinant O | |
| and O | |
| the O | |
| eigenvalues B-Math | |
| of O | |
| a O | |
| square O | |
| matrix O | |
| are O | |
| the O | |
| roots O | |
| of O | |
| a O | |
| polynomial O | |
| determinan O | |
| of O | |
| a O | |
| square B-Math | |
| matrix I-Math | |
| are O | |
| the O | |
| roots O | |
| of O | |
| a O | |
| polynomial O | |
| determinan O | |
| are O | |
| the O | |
| roots O | |
| of O | |
| a O | |
| polynomial B-Math | |
| determinant I-Math | |
| in O | |
| this O | |
| context O | |
| the O | |
| elements O | |
| of O | |
| v O | |
| are O | |
| commonly O | |
| called O | |
| vectors B-Math | |
| and O | |
| the O | |
| elements O | |
| of O | |
| f O | |
| are O | |
| called O | |
| scalar O | |
| and O | |
| the O | |
| elements O | |
| of O | |
| f O | |
| are O | |
| called O | |
| scalars B-Math | |
| matrices B-Math | |
| are O | |
| used O | |
| to O | |
| represent O | |
| linear O | |
| maps O | |
| and O | |
| allow O | |
| explicit O | |
| computations O | |
| in O | |
| linear O | |
| algebr O | |
| are O | |
| used O | |
| to O | |
| represent O | |
| linear B-Math | |
| maps I-Math | |
| and O | |
| allow O | |
| explicit O | |
| computations O | |
| in O | |
| linear O | |
| algebr O | |
| and O | |
| allow O | |
| explicit O | |
| computations O | |
| in O | |
| linear B-Math | |
| algebra I-Math | |
| such O | |
| a O | |
| system O | |
| is O | |
| also O | |
| known O | |
| as O | |
| an O | |
| overdetermined B-Math | |
| system I-Math | |
| because O | |
| an O | |
| isomorphism B-Math | |
| preserves O | |
| linear O | |
| structure O | |
| two O | |
| isomorphic O | |
| vector O | |
| spaces O | |
| are O | |
| essentially O | |
| the O | |
| same O | |
| from O | |
| the O | |
| linear O | |
| algebra O | |
| point O | |
| of O | |
| view O | |
| in O | |
| the O | |
| sense O | |
| that O | |
| they O | |
| can O | |
| not O | |
| be O | |
| distinguished O | |
| by O | |
| using O | |
| vector O | |
| space O | |
| propertie O | |
| preserves O | |
| linear O | |
| structure O | |
| two O | |
| isomorphic O | |
| vector O | |
| spaces O | |
| are O | |
| essentially O | |
| the O | |
| same O | |
| from O | |
| the O | |
| linear B-Math | |
| algebra I-Math | |
| point O | |
| of O | |
| view O | |
| in O | |
| the O | |
| sense O | |
| that O | |
| they O | |
| can O | |
| not O | |
| be O | |
| distinguished O | |
| by O | |
| using O | |
| vector O | |
| space O | |
| propertie O | |
| isomorphic B-Math | |
| vector I-Math | |
| spaces I-Math | |
| are O | |
| essentially O | |
| the O | |
| same O | |
| from O | |
| the O | |
| linear O | |
| algebra O | |
| point O | |
| of O | |
| view O | |
| in O | |
| the O | |
| sense O | |
| that O | |
| they O | |
| can O | |
| not O | |
| be O | |
| distinguished O | |
| by O | |
| using O | |
| vector O | |
| space O | |
| propertie O | |
| sometimes O | |
| the O | |
| term O | |
| linear O | |
| function O | |
| has O | |
| the O | |
| same O | |
| meaning O | |
| as O | |
| linear B-Math | |
| map I-Math | |
| while O | |
| in O | |
| analysis O | |
| it O | |
| does O | |
| no O | |
| linear B-Math | |
| function I-Math | |
| has O | |
| the O | |
| same O | |
| meaning O | |
| as O | |
| linear O | |
| map O | |
| while O | |
| in O | |
| analysis O | |
| it O | |
| does O | |
| no O | |
| infinitedimensional O | |
| vector B-Math | |
| spaces I-Math | |
| occur O | |
| in O | |
| many O | |
| areas O | |
| of O | |
| mathematic O | |
| occur O | |
| in O | |
| many O | |
| areas O | |
| of O | |
| mathematics B-Math | |
| infinitedimensional B-Attributes | |
| vector O | |
| spaces O | |
| occur O | |
| in O | |
| many O | |
| areas O | |
| of O | |
| mathematic O | |
| in O | |
| particular O | |
| over O | |
| a O | |
| principal O | |
| ideal O | |
| domain O | |
| every O | |
| submodule B-Math | |
| of O | |
| a O | |
| free O | |
| module O | |
| is O | |
| free O | |
| and O | |
| the O | |
| fundamental O | |
| theorem O | |
| of O | |
| finitely O | |
| generated O | |
| abelian O | |
| groups O | |
| may O | |
| be O | |
| extended O | |
| straightforwardly O | |
| to O | |
| finitely O | |
| generated O | |
| modules O | |
| over O | |
| a O | |
| principal O | |
| rin O | |
| of O | |
| a O | |
| free O | |
| module B-Math | |
| is O | |
| free O | |
| and O | |
| the O | |
| fundamental O | |
| theorem O | |
| of O | |
| finitely O | |
| generated O | |
| abelian O | |
| groups O | |
| may O | |
| be O | |
| extended O | |
| straightforwardly O | |
| to O | |
| finitely O | |
| generated O | |
| modules O | |
| over O | |
| a O | |
| principal O | |
| rin O | |
| module O | |
| homomorphisms O | |
| between O | |
| finitely O | |
| generated O | |
| free O | |
| modules O | |
| may O | |
| be O | |
| represented O | |
| by O | |
| matrices B-Math |