Datasets:
File size: 11,018 Bytes
62a9c07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
[
{
"name": "IChO-2025_6",
"background": {
"image": [],
"context": "Photochemical reduction of carbon dioxide is a promising approach for solar energy conversion and mitigation of atmospheric CO2. This problem explores direct thermal decomposition, a Zn/ZnO thermochemical cycle, and photocatalytic reduction using semiconductors. Assume reaction enthalpies and entropies are temperature-independent. Data (298 K unless noted): ΔfH° / kJ mol^{-1}: CO2(g) = -393.5, CO(g) = -110.5, Zn(s) = 0, Zn(l) = 6.5, Zn(g) = 130.4, ZnO(s) = -350.5. S° / J mol^{-1} K^{-1}: CO2(g) = 213.8, CO(g) = 197.7, O2(g) = 205.1, Zn(s) = 41.7, Zn(l) = 50.8, Zn(g) = 161.0, ZnO(s) = 43.7. Melting/boiling: Zn melts at 692.7 K and boils at 1180 K; ZnO melts at 2247 K. \n Direct decomposition of $CO_{2}$ to CO and $O_{2}$ is a highly endothermic process which requires a large amount of energy - from heat or from light."
},
"points": 22
},
{
"name": "IChO-2025_6.1",
"modality": "text",
"type": "Quantitative Calculation",
"evaluation": "Numeric Verification",
"points": 5,
"field": "",
"source": "IChO-2025",
"question": {
"context": "Estimate the temperature (K) at which half of CO2 decomposes at equilibrium at a total pressure of 1 bar for CO2 → CO + 1/2 O2."
},
"answer": [
{
"step": 1,
"content": "Extent setup (let n0 be initial CO2): at 50% conversion, n(CO2) = 0.5 n0, n(CO) = 0.5 n0, n(O2) = 0.25 n0, n(total) = 1.25 n0.",
"points": 1
},
{
"step": 2,
"content": "Mole fractions: x(CO2) = 0.4, x(CO) = 0.4, x(O2) = 0.2. Partial pressures at 1 bar: p(CO2) = 0.4 bar, p(CO) = 0.4 bar, p(O2) = 0.2 bar.",
"points": 1
},
{
"step": 3,
"content": "Equilibrium constant: K_p = p(CO) p(O2)^{1/2} / p(CO2) = 0.4 × 0.2^{1/2} / 0.4 = 0.447.",
"points": 1
},
{
"step": 4,
"content": "Thermodynamics at 298 K: ΔrH° = (−110.5 − (−393.5)) kJ mol^{-1} = 283 kJ mol^{-1}. ΔrS° = 197.7 + 0.5 × 205.1 − 213.8 = 86.45 J mol^{-1} K^{-1}.",
"points": 1
},
{
"step": 5,
"content": "Use ln K_p = −ΔG°/RT = (−ΔrH°/RT) + (ΔrS°/R) ⇒ with K_p = 0.447 obtain T ≈ 3038 K.",
"points": 1
}
]
},
{
"background": {
"context": "The use of metal/metal oxide catalytic systems allows the temperature of $CO_{2}$ decomposition to be significantly reduced and eases the separation of the gaseous products by using thermochemical cycles. Consider a catalytic cycle based on the Zn/ZnO system and containing two reactions. The net reaction is $CO_{2}$ decomposition into CO and $O_{2}$ . Reaction 1 is exothermic, while Reaction 2 is highly endothermic - the reactants should be heated to the required temperature."
}
},
{
"name": "IChO-2025_6.2",
"modality": "text",
"type": "Mechanistic Reasoning",
"evaluation": "Reasoning Consistency",
"points": 2,
"field": "",
"source": "IChO-2025",
"question": {
"context": "Write balanced equations for the Zn/ZnO thermochemical cycle (net CO2 → CO + 1/2 O2). Operating temperature for Reaction 1 is 1073 K."
},
"answer": [
{
"step": 1,
"content": "Reaction 1 (exothermic): Zn + CO2 → ZnO + CO",
"points": 1
},
{
"step": 2,
"content": "Reaction 2 (endothermic): ZnO → Zn + 1/2 O2",
"points": 1
}
]
},
{
"name": "IChO-2025_6.3",
"modality": "text",
"type": "Quantitative Calculation",
"evaluation": "Numeric Verification",
"points": 3,
"field": "",
"source": "IChO-2025",
"question": {
"context": "For Reaction 1 at 1073 K (Zn(l) + CO2(g) → ZnO(s) + CO(g)), calculate the equilibrium constant K and the degree of CO2 conversion x."
},
"answer": [
{
"step": 1,
"content": "ΔrH° = (−350.5 + (−110.5)) − (6.5 + (−393.5)) = −74 kJ mol^{-1}. ΔrS° = (43.7 + 197.7) − (50.8 + 213.8) = −23.2 J mol^{-1} K^{-1}.",
"points": 1
},
{
"step": 2,
"content": "ΔrG°{1073} = −74 × 10^{3} − (−23.2 × 10^{−3} × 1073) = −49.1 × 10^{3} J mol^{-1}. K = exp(−ΔG°/RT) = exp(49100 / (8.314 × 1073)) ≈ 246.",
"points": 1
},
{
"step": 3,
"content": "Degree of conversion for CO2: x = K/(K + 1) ≈ 0.996.",
"points": 1
}
]
},
{
"name": "IChO-2025_6.4",
"modality": "text",
"type": "Quantitative Calculation",
"evaluation": "Numeric Verification",
"points": 3,
"field": "",
"source": "IChO-2025",
"question": {
"context": "For Reaction 2 at 2000 K (ZnO(s) → Zn(g) + 1/2 O2(g)), calculate the equilibrium oxygen pressure p(O2) in bar."
},
"answer": [
{
"step": 1,
"content": "ΔrH° = 130.4 − (−350.5) = 480.9 kJ mol^{-1}. ΔrS° = 161.0 + 0.5 × 205.1 − 43.7 = 219.85 J mol^{-1} K^{-1}.",
"points": 1
},
{
"step": 2,
"content": "ΔrG°{2000} = 480.9 × 10^{3} − 219.85 × 10^{−3} × 2000 = 41.2 × 10^{3} J mol^{-1}. K_p = exp(−ΔG°/RT) = exp(−41200/(8.314×2000)) ≈ 0.084.",
"points": 1
},
{
"step": 3,
"content": "For ZnO ⇌ Zn(g) + 1/2 O2(g): K_p = p(Zn) p(O2)^{1/2}. With stoichiometry p(Zn) = p(O2)^{1/2}, K_p = 2 p(O2)^{3/2}. Solve p(O2) ≈ 0.12 bar.",
"points": 1
}
]
},
{
"background": {
"context": "Photocatalytic reduction of $CO_{2}$ with water is akin to natural photosynthesis. Plants convert $CO_{2}$ to carbohydrates as an energy source, but human civilisation needs hydrocarbons to produce energy. On the way from $CO_{2}$ to $C_{x}H_{y}$ there are many possible intermediate products of $CO_{2}$ reduction."
}
},
{
"name": "IChO-2025_6.5",
"modality": "text",
"type": "Qualitative Identification",
"evaluation": "Selection Check",
"points": 3,
"field": "",
"source": "IChO-2025",
"question": {
"context": "Complete the one-carbon species table for CO2 reduction (only H and/or O with one C). Columns: +3, +2 (anion), +2 (neutral molecule), 0, −2, −4. Put exactly one valid example in each box."
},
"answer": [
{
"step": 1,
"content": "+3: CO2− or HCO2− or CO+",
"points": 0.5
},
{
"step": 2,
"content": "+2 (anion): HCOO− or CO2^{2−}",
"points": 0.5
},
{
"step": 3,
"content": "+2 (neutral molecule): CO or HCOOH",
"points": 0.5
},
{
"step": 4,
"content": "0: CH2O or CH2(OH)2",
"points": 0.5
},
{
"step": 5,
"content": "−2: CH3OH or CH3O− or CH3+",
"points": 0.5
},
{
"step": 6,
"content": "−4: CH4",
"points": 0.5
}
]
},
{
"name": "IChO-2025_6.6",
"modality": "text",
"type": "Qualitative Identification",
"evaluation": "Selection Check",
"points": 2,
"field": "",
"source": "IChO-2025",
"question": {
"context": "Visible light range 400–700 nm. Semiconductor band gaps (eV): CdS 2.4, Ge 0.67, Si 1.1, SiC 3.2, WO3 2.8, ZrO2 5.0. Choose which can be excited by visible light and support with a calculation."
},
"answer": [
{
"step": 1,
"content": "Use shortest visible wavelength λ = 400 nm. Photon energy E = hc/(λ × 1.602×10^{-19}) = 3.10 eV. Materials with band gap < 3.10 eV are excitable by visible light.",
"points": 1
},
{
"step": 2,
"content": "Choices: CdS, Ge, Si, WO3 (all < 3.10 eV). SiC and ZrO2 are not excitable (3.2 eV and 5.0 eV).",
"points": 1
}
]
},
{
"name": "IChO-2025_6.7",
"modality": "text",
"type": "Quantitative Calculation",
"evaluation": "Numeric Verification",
"points": 4,
"field": "",
"source": "IChO-2025",
"question": {
"context": "Early photocatalysis test: SiC in V = 100 mL water; CO2 bubbled at ν = 3.0 L min^{-1} (T = 25 °C, p = 1 atm) for t = 7 h. Lamp P = 500 W, λ = 365 nm. After irradiation: c(HCHO) = 1.0×10^{-3} M, c(CH3OH) = 5.4×10^{-3} M. Define degree of CO2 conversion η = (n(HCHO)+n(CH3OH))/n(CO2). Apparent quantum yield ϕ = N_e / N_i with 4 electrons for HCHO and 6 for CH3OH."
},
"answer": [
{
"step": 1,
"content": "Moles of CO2 delivered (assume ideal gas): n(CO2) = pV/RT = 101325 Pa × (3.0 L min^{-1} × 420 min) / (8.314 × 298) = 51.5 mol.",
"points": 1
},
{
"step": 2,
"content": "Degree of conversion: η = (1.0×10^{-3} + 5.4×10^{-3}) mol L^{-1} × 0.100 L / 51.5 mol = 1.2×10^{-5}.",
"points": 1
},
{
"step": 3,
"content": "Moles of incident photons: n(hν) = Pt / (hc N_A / λ) = 500 W × 7 × 3600 s × 365×10^{-9} m / (6.626×10^{-34} J s × 2.998×10^{8} m s^{-1} × 6.022×10^{23}) = 38.4 mol.",
"points": 1
},
{
"step": 4,
"content": "Apparent quantum yield: ϕ = (4 n(HCHO) + 6 n(CH3OH)) / n(hν) = (4×1.0×10^{-4} + 6×5.4×10^{-4}) / 38.4 = 9.5×10^{-5}.",
"points": 1
}
]
}
]
|