| function [tpr,tnr,info] = vl_roc(labels, scores, varargin) | |
| %VL_ROC ROC curve. | |
| % [TPR,TNR] = VL_ROC(LABELS, SCORES) computes the Receiver Operating | |
| % Characteristic (ROC) curve. LABELS are the ground truth labels, | |
| % greather than zero for a positive sample and smaller than zero for | |
| % a negative one. SCORES are the scores of the samples obtained from | |
| % a classifier, where lager scores should correspond to positive | |
| % labels. | |
| % | |
| % Samples are ranked by decreasing scores, starting from rank 1. | |
| % TPR(K) and TNR(K) are the true positive and true negative rates | |
| % when samples of rank smaller or equal to K-1 are predicted to be | |
| % positive. So for example TPR(3) is the true positive rate when the | |
| % two samples with largest score are predicted to be | |
| % positive. Similarly, TPR(1) is the true positive rate when no | |
| % samples are predicted to be positive, i.e. the constant 0. | |
| % | |
| % Set the zero the lables of samples that should be ignored in the | |
| % evaluation. Set to -INF the scores of samples which are not | |
| % retrieved. If there are samples with -INF score, then the ROC curve | |
| % may have maximum TPR and TNR smaller than 1. | |
| % | |
| % [TPR,TNR,INFO] = VL_ROC(...) returns an additional structure INFO | |
| % with the following fields: | |
| % | |
| % info.auc:: Area under the ROC curve (AUC). | |
| % The ROC curve has a `staircase shape' because for each sample | |
| % only TP or TN changes, but not both at the same time. Therefore | |
| % there is no approximation involved in the computation of the | |
| % area. | |
| % | |
| % info.eer:: Equal error rate (EER). | |
| % The equal error rate is the value of FPR (or FNR) when the ROC | |
| % curves intersects the line connecting (0,0) to (1,1). | |
| % | |
| % VL_ROC(...) with no output arguments plots the ROC curve in the | |
| % current axis. | |
| % | |
| % VL_ROC() acccepts the following options: | |
| % | |
| % Plot:: [] | |
| % Setting this option turns on plotting unconditionally. The | |
| % following plot variants are supported: | |
| % | |
| % tntp:: Plot TPR against TNR (standard ROC plot). | |
| % tptn:: Plot TNR against TPR (recall on the horizontal axis). | |
| % fptp:: Plot TPR against FPR. | |
| % fpfn:: Plot FNR against FPR (similar to DET curve). | |
| % | |
| % NumPositives:: [] | |
| % NumNegatives:: [] | |
| % If set to a number, pretend that LABELS contains this may | |
| % positive/negative labels. NUMPOSITIVES/NUMNEGATIVES cannot be | |
| % smaller than the actual number of positive/negative entrires in | |
| % LABELS. The additional positive/negative labels are appended to | |
| % the end of the sequence, as if they had -INF scores (not | |
| % retrieved). This is useful to evaluate large retrieval systems in | |
| % which one stores ony a handful of top results for efficiency | |
| % reasons. | |
| % | |
| % About the ROC curve:: | |
| % Consider a classifier that predicts as positive all samples whose | |
| % score is not smaller than a threshold S. The ROC curve represents | |
| % the performance of such classifier as the threshold S is | |
| % changed. Formally, define | |
| % | |
| % P = overall num. of positive samples, | |
| % N = overall num. of negative samples, | |
| % | |
| % and for each threshold S | |
| % | |
| % TP(S) = num. of samples that are correctly classified as positive, | |
| % TN(S) = num. of samples that are correctly classified as negative, | |
| % FP(S) = num. of samples that are incorrectly classified as positive, | |
| % FN(S) = num. of samples that are incorrectly classified as negative. | |
| % | |
| % Consider also the rates: | |
| % | |
| % TPR = TP(S) / P, FNR = FN(S) / P, | |
| % TNR = TN(S) / N, FPR = FP(S) / N, | |
| % | |
| % and notice that by definition | |
| % | |
| % P = TP(S) + FN(S) , N = TN(S) + FP(S), | |
| % 1 = TPR(S) + FNR(S), 1 = TNR(S) + FPR(S). | |
| % | |
| % The ROC curve is the parametric curve (TPR(S), TNR(S)) obtained | |
| % as the classifier threshold S is varied in the reals. The TPR is | |
| % also known as recall (see VL_PR()). | |
| % | |
| % The ROC curve is contained in the square with vertices (0,0) The | |
| % (average) ROC curve of a random classifier is a line which | |
| % connects (1,0) and (0,1). | |
| % | |
| % The ROC curve is independent of the prior probability of the | |
| % labels (i.e. of P/(P+N) and N/(P+N)). | |
| % | |
| % REFERENCES: | |
| % [1] http://en.wikipedia.org/wiki/Receiver_operating_characteristic | |
| % | |
| % See also: VL_PR(), VL_DET(), VL_HELP(). | |
| % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. | |
| % All rights reserved. | |
| % | |
| % This file is part of the VLFeat library and is made available under | |
| % the terms of the BSD license (see the COPYING file). | |
| [tp, fp, p, n, perm, varargin] = vl_tpfp(labels, scores, varargin{:}) ; | |
| opts.plot = [] ; | |
| opts. = false ; | |
| opts = vl_argparse(opts,varargin) ; | |
| % compute the rates | |
| small = 1e-10 ; | |
| tpr = tp / max(p, small) ; | |
| fpr = fp / max(n, small) ; | |
| fnr = 1 - tpr ; | |
| tnr = 1 - fpr ; | |
| % -------------------------------------------------------------------- | |
| % Additional info | |
| % -------------------------------------------------------------------- | |
| if nargout > 2 || nargout == 0 | |
| % Area under the curve. Since the curve is a staircase (in the | |
| % sense that for each sample either tn is decremented by one | |
| % or tp is incremented by one but the other remains fixed), | |
| % the integral is particularly simple and exact. | |
| info.auc = sum(tnr .* diff([0 tpr])) ; | |
| % Equal error rate. One must find the index S for which there is a | |
| % crossing between TNR(S) and TPR(s). If such a crossing exists, | |
| % there are two cases: | |
| % | |
| % o tnr o | |
| % / \ | |
| % 1-eer = tnr o-x-o 1-eer = tpr o-x-o | |
| % / \ | |
| % tpr o o | |
| % | |
| % Moreover, if the maximum TPR is smaller than 1, then it is | |
| % possible that neither of the two cases realizes (then EER=NaN). | |
| s = max(find(tnr > tpr)) ; | |
| if s == length(tpr) | |
| info.eer = NaN ; | |
| else | |
| if tpr(s) == tpr(s+1) | |
| info.eer = 1 - tpr(s) ; | |
| else | |
| info.eer = 1 - tnr(s) ; | |
| end | |
| end | |
| end | |
| % -------------------------------------------------------------------- | |
| % Plot | |
| % -------------------------------------------------------------------- | |
| if ~isempty(opts.plot) || nargout == 0 | |
| if isempty(opts.plot), opts.plot = 'fptp' ; end | |
| cla ; hold on ; | |
| switch lower(opts.plot) | |
| case {'truenegatives', 'tn', 'tntp'} | |
| hroc = plot(tnr, tpr, 'b', 'linewidth', 2) ; | |
| hrand = spline([0 1], [1 0], 'r--', 'linewidth', 2) ; | |
| spline([0 1], [0 1], 'k--', 'linewidth', 1) ; | |
| plot(1-info.eer, 1-info.eer, 'k*', 'linewidth', 1) ; | |
| xlabel('true negative rate') ; | |
| ylabel('true positive rate (recall)') ; | |
| loc = 'sw' ; | |
| case {'falsepositives', 'fp', 'fptp'} | |
| hroc = plot(fpr, tpr, 'b', 'linewidth', 2) ; | |
| hrand = spline([0 1], [0 1], 'r--', 'linewidth', 2) ; | |
| spline([1 0], [0 1], 'k--', 'linewidth', 1) ; | |
| plot(info.eer, 1-info.eer, 'k*', 'linewidth', 1) ; | |
| xlabel('false positive rate') ; | |
| ylabel('true positive rate (recall)') ; | |
| loc = 'se' ; | |
| case {'tptn'} | |
| hroc = plot(tpr, tnr, 'b', 'linewidth', 2) ; | |
| hrand = spline([0 1], [1 0], 'r--', 'linewidth', 2) ; | |
| spline([0 1], [0 1], 'k--', 'linewidth', 1) ; | |
| plot(1-info.eer, 1-info.eer, 'k*', 'linewidth', 1) ; | |
| xlabel('true positive rate (recall)') ; | |
| ylabel('false positive rate') ; | |
| loc = 'sw' ; | |
| case {'fpfn'} | |
| hroc = plot(fpr, fnr, 'b', 'linewidth', 2) ; | |
| hrand = spline([0 1], [1 0], 'r--', 'linewidth', 2) ; | |
| spline([0 1], [0 1], 'k--', 'linewidth', 1) ; | |
| plot(info.eer, info.eer, 'k*', 'linewidth', 1) ; | |
| xlabel('false positive (false alarm) rate') ; | |
| ylabel('false negative (miss) rate') ; | |
| loc = 'ne' ; | |
| otherwise | |
| error('''%s'' is not a valid PLOT type.', opts.plot); | |
| end | |
| grid on ; | |
| xlim([0 1]) ; | |
| ylim([0 1]) ; | |
| axis square ; | |
| title(sprintf('ROC (AUC: %.2f%%, EER: %.2f%%)', info.auc * 100, info.eer * 100), ... | |
| 'interpreter', 'none') ; | |
| legend([hroc hrand], 'ROC', 'ROC rand.', 'location', loc) ; | |
| end | |
| % -------------------------------------------------------------------- | |
| % Stable output | |
| % -------------------------------------------------------------------- | |
| if opts. | |
| tpr(1) = [] ; | |
| tnr(1) = [] ; | |
| tpr_ = tpr ; | |
| tnr_ = tnr ; | |
| tpr = NaN(size(tpr)) ; | |
| tnr = NaN(size(tnr)) ; | |
| tpr(perm) = tpr_ ; | |
| tnr(perm) = tnr_ ; | |
| end | |
| % -------------------------------------------------------------------- | |
| function h = spline(x,y,spec,varargin) | |
| % -------------------------------------------------------------------- | |
| prop = vl_linespec2prop(spec) ; | |
| h = line(x,y,prop{:},varargin{:}) ; | |