$x_{t+1},\ldots x_{t+\ell}$
$O(|{\cal X}|^{2L})$
$\forall i=1,\ldots,L$
$1000$
${\cal M}_{b}$
$(X^{\tau},Z^{L-\tau})\sim{\cal M}_{b}^{L}.$
$(x^{i},y^{j})$
$x^{L}$
$\forall x\in{\cal X}$
$\forall x^{i_{0}}\in{\cal X}^{i_{0}}$
$X^{L}\sim{\cal M}_{s}^{L}$
$\mathbb{E}_{X^{L}\sim{\cal M}_{s}^{L}}[\tau]$
$(X^{L},Y^{L})$
$\ell=L$
$Z^{L-\tau}$
$x^{i}\in{\cal X}^{i}$
${\cal M}_{b}(\cdot|x^{n})=\text{Ber}(q),$
$\forall\ell\leq L$
$\tau,{\cal M}_{b,{\rm next}}$
$L-1$
$\beta(X^{L},Y^{L})=\tau$
$\displaystyle=\sum_{\ell=0}^{L}\ell\cdot\Pr{\left({\tau=\ell}\right)}=\sum_{% \ell=1}^{L}\sum_{x^{\ell}\in{\cal X}^{\ell}}\prod_{i=1}^{\ell}\min\{{\cal M}_{% b}(x_{i}\mid x^{i-1}),{\cal M}_{s}(x_{i}\mid x^{i-1})\},$
$\displaystyle\stackrel{{\scriptstyle(b)}}{{\leq}}\sum_{\ell\leq L}\sum_{x^{% \ell}}\min\left\{\text{Pr}\left(X^{1:\ell}=x^{\ell}\right),\text{Pr}\left(Y^{1% :\ell}=x^{\ell}\right)\right\}$
$\displaystyle=\Pr{\left({X^{i_{0}+1}=x^{i_{0}+1},\tau\geq i_{0}+1}\right)}+\Pr% {\left({Y^{i_{0}}=x^{i_{0}},\tau\leq i_{0}}\right)}\cdot p_{\rm res}^{x^{i_{0}% }}(x_{i_{0}+1})$
$Y_{\tau+1}\neq X_{\tau+1}$
$\displaystyle=\sum_{x^{\ell+1}\in{\cal X}^{\ell+1}}\prod_{i=1}^{\ell}\min\{{% \cal M}_{b}(x_{i}\mid x^{i-1}),{\cal M}_{s}(x_{i}\mid x^{i-1})\}({\cal M}_{s}(% x_{\ell+1}\mid x^{\ell})-\min\{{\cal M}_{b}(x_{\ell+1}\mid x^{\ell}),{\cal M}_% {s}(x_{\ell+1}\mid x^{\ell})\})$
${\cal M}_{s}(\cdot\mid X^{i-1}),{\cal M}_{b}(\cdot\mid X^{i-1}),\forall i=0,% \ldots,L$
$L=8$
$\displaystyle\min\{{\cal M}_{s}(x^{\ell}),{\cal M}_{b}(x^{\ell})\}=\min\{\prod% _{i=1}^{\ell}{\cal M}_{s}(x_{i}\mid x^{i-1}),{\cal M}_{b}(x_{i}\mid x^{i-1})\},$
${\cal M}^{*}(\cdot\mid x^{t})$
$L-\beta(X^{L},Y^{L})$
$X_{1},\ldots,X_{L}\sim{\cal M}_{s}^{L}(\cdot)$
$\forall y^{L-\tau}\in{\cal X}^{{L-\tau}}$
$\Pr{\left({\tau=L}\right)}=\sum_{x^{L}\in{\cal X}^{L}}\prod_{i=1}^{L}\min\{{% \cal M}_{b}(x_{i}\mid x^{i-1}),{\cal M}_{s}(x_{i}\mid x^{i-1})\}.$
$\eta_{i}\sim U(0,1)$
$\Pi({\cal M}_{s}^{L},{\cal M}_{b}^{L})$
$Y\sim{\cal M}_{b}$
$L=4$
$\displaystyle=\Pr{\left({X^{\ell_{0}-1}=x^{\ell_{0}-1},\tau\geq\ell_{0}}\right% )}+\Pr{\left({X^{\ell_{0}-1}=x^{\ell_{0}-1},\tau=\ell_{0}-1}\right)}$
$\displaystyle=\Pr{\left({Y^{i_{0}+1}=x^{i_{0}+1},\tau\geq i_{0}+1}\right)}+\Pr% {\left({Y^{i_{0}+1}=x^{i_{0}+1},\tau\leq i_{0}}\right)}$
$L=1$
$\ell=\ell_{0}-1$
$\displaystyle p_{\rm rej}(x^{i})$
$\displaystyle{:=}\sum_{x}{\left({{\cal M}_{b}(x^{i},x)-{\cal M}_{s}(x^{i},x)}% \right)}_{+},$
$\displaystyle\;\;\;\Pr{\left({\tau=\ell}\right)}$
$\displaystyle=\sum_{\ell=1}^{L}\Pr{\left({\tau\geq\ell}\right)}=\sum_{\ell=1}^% {L}\sum_{x^{\ell}\in{\cal X}^{\ell}}\Pr{\left({X^{\ell}=x^{\ell},\tau\geq\ell}% \right)}$
$\displaystyle=\min\{\sum_{x\in{\cal X}}\min\{{\cal M}_{b}(x^{\ell_{0}-1},x),{% \cal M}_{s}(x^{\ell_{0}-1},x)\}+p_{\rm remain}(x^{\ell_{0}-1}),$
$\ell>1$
$\forall\ell\leq L-1,x^{\ell}\in{\cal X}^{\ell}$
$x^{t}\in{\cal X}^{t}$
$\Pr{\left({X^{\ell}=x^{\ell},\tau\geq\ell}\right)}=\min\{{\cal M}_{b}(x^{\ell}% ),{\cal M}_{s}(x^{\ell})\}.$
$\displaystyle{:=}\sum_{x}{\left({{\cal M}_{s}(x^{i},x)-{\cal M}_{b}(x^{i},x)}% \right)}_{+}.$
$Y^{L}=(X^{\tau},Z^{L-\tau})$
$\displaystyle\sum_{y^{L}}\pi(x^{L},y^{L})$
$(x)_{+}=\max\{x,0\}.$
${\cal M}_{b}(\cdot\mid X^{\tau},Y)$
$\displaystyle={\cal M}_{s}(x^{L})\cdot\min\left\{1,\frac{{\cal M}_{b}(x^{L})}{% {\cal M}_{s}(x^{L})}\right\}$
${\cal M}^{L}_{s}(x^{L})$
$(x_{i},\ldots,x_{j})$
$0\leq\tau\leq L$
$\pi\in\Pi({\cal M}^{L}_{s},{\cal M}^{L}_{b})$
$\displaystyle=\sum_{\ell\leq L}\sum_{x^{\ell}}\text{Pr}_{X^{L},Y^{L}}\left(X^{% 1:\ell}=Y^{1:\ell}=x^{\ell},\beta(X^{L},Y^{L})\geq\ell\right)$
$X^{L}$
$Y_{\tau+1}$
$x^{L}\in{\cal X}^{L}$
$\textsc{Verify}_{\pi}$
${\cal M}_{b,{\rm next}}^{L-\tau}$
$\tau\leq L$
$\min\{{\cal M}_{b}(x^{L}),{\cal M}_{s}(x^{L})\}$
$\displaystyle=\prod_{i=1}^{\ell}\min\{1,\frac{{\cal M}_{b}(x_{i}\mid x^{i-1})}% {{\cal M}_{s}(x_{i}\mid x^{i-1})}\}{\left({1-\min\{1,\frac{{\cal M}_{b}(x_{% \ell+1}\mid x^{\ell})}{{\cal M}_{s}(x_{\ell+1}\mid x^{\ell})}\}}\right)}.$
$x^{t}$
$X_{i}\sim{\cal M}_{s}(\cdot\mid X^{i-1}).$
$\tau=L-i$
${\rm E.O.S}\in X^{\tau}$
$\displaystyle=\sum_{x^{L}\in{\cal X}^{L}}\Pr{\left({\tau=\ell,X^{L}=x^{L}}% \right)}$
$\pi_{\rm token}$
$\displaystyle=\sum_{x^{\ell+1}\in{\cal X}^{\ell+1}}\Pr{\left({\tau=\ell,X^{% \ell+1}=x^{\ell+1}}\right)}$
$Z\sim{\cal M}_{b,{\rm next}}(\cdot)$
$X^{\tau}$
$(a)$
$\ell $\displaystyle=\Pr{\left({X^{\ell_{0}-1}=x^{\ell_{0}-1},\tau\leq\ell_{0}-1}%
\right)}\cdot\Pr{\left({X^{\ell_{0}-1}\text{ is accepted.}}\right)}$ $Y_{1}=X_{1}$ $\displaystyle=\min\left\{{\cal M}_{b}(x^{\ell_{0}-1}),{\cal M}_{s}(x^{\ell_{0}%
-1})\right\},$ $\displaystyle=\text{Pr}_{\pi}{\left({\beta{{\color[rgb]{0,0,0}=\ell}}\mid X^{L%
}}\right)}{:=}{{\color[rgb]{0,0,0}\frac{\sum_{\ell:\beta(X^{L},Y^{L})=\ell}\pi%
(X^{L},Y^{L})}{\pi(X^{L})}}},$ $Y_{2}$ $\displaystyle\max_{\pi\in\Pi({\cal M}_{s}^{L},{\cal M}_{b}^{L})}\mathbb{E}_{X^%
{L},Y^{L}\sim\pi}\left[\beta(X^{L},Y^{L})\right]\leq\sum_{\tau=1}^{L}\sum_{x^{%
\tau}\in{\cal X}^{\tau}}\min\{{\cal M}_{s}(x^{\ell}),{\cal M}_{b}(x^{\ell})\}$ $\forall x^{n}$ $\eta_{0}\leq\min\left\{\frac{{\cal M}_{b}(X^{L})}{{\cal M}_{s}(X^{L})},1\right\}$ $O(|{\cal X}|^{L})$ $Z^{L-\tau}\sim{\cal M}_{b,{\rm next}}$ $L=6$ ${\cal M}_{b}(Y_{3}\mid Y_{1},y)$ $Y^{L}=(X^{\tau},Z^{i-\tau})$ $\displaystyle=\sum_{\ell\leq L}\sum_{x^{\ell}}\min\{{\cal M}_{s}^{\ell}(x^{%
\ell}),{\cal M}_{b}^{\ell}(x^{\ell})\}.$ $\displaystyle=\Pr{\left({X^{L}=x^{L}}\right)}\Pr{\left({\tau=L\mid X^{L}=x^{L}%
}\right)}$ $p_{\rm res}(x)=\frac{{\left({{\cal M}_{b}(x\mid X^{\tau})-{\cal M}_{s}(x\mid X%
^{\tau})}\right)}_{+}}{\sum_{x^{\prime}}{\left({{\cal M}_{b}(x^{\prime}\mid X^%
{\tau})-{\cal M}_{s}(x^{\prime}\mid X^{\tau})}\right)}_{+}},$ ${\cal M}_{s}=\text{Ber}(1)$ $\frac{{\left({{\cal M}_{b}(x^{L})-{\cal M}_{s}(x^{L})}\right)}_{+}}{\sum_{x^{L%
}}{\left({{\cal M}_{b}(x^{L})-{\cal M}_{s}(x^{L})}\right)}_{+}}.$ $i=0,1,\ldots,L$