$\operatorname{Inst}(\emptyset)$
$\prod_{s=1}^{t}2^{p_{s}-1}$
${\rm D}_{\rm NP}\leq_{0\hbox{-}T}{\rm D}_{\rm P}$
$\p^{A}=\np^{A}$
$\p^{L}=\p$
$\langle M^{\prime},\epsilon\rangle$
$\np^{\mathcal{O}}$
$\langle M,1^{n},1^{t}\rangle\in{\rm U}_{\rm NP}$
$\np^{L}=\np$
$x\notin{\rm HP}$
$\np^{\p}=\np$
$\p$
$A\leq_{f(n)\hbox{-}T}B$
${\rm D}_{\rm NP}\not\in\p^{{\rm D}_{\rm P}}$
$x\in\mathcal{O}$
$L\in{\rm\Sigma_{1}^{0}}$
$n,t\in{\mathbb{N}^{+}}$
$t^{\prime}\in{\mathbb{N}}$
$\Theta(2^{n})$
${\rm D}_{\rm NP}=\{\langle M,1^{n}\rangle\mid n\in{\mathbb{N}}\land(\exists x% \in\{0,1\}^{n})[M$
$\langle M,1^{n}\rangle\in{\rm D}_{\rm NP}$
${\rm U}_{\rm P}=\{\langle M,x,1^{t}\rangle\mid t\in{\mathbb{N}^{+}}\land M$
$M^{\mathcal{O}}$
${\rm HP}=\{\langle M,w\rangle\mid M\text{ halts on input }w\}.$
$(\forall x)[x\in A\iff f(x)\in B]$
$z\notin{\rm D}_{\rm NP}$
$(\forall L\in{\rm\Sigma_{1}^{0}})[L\leq_{m}A]$
$\p^{\p}=\p$
$A\leq_{m}B$
${\mathbb{N}^{+}}=\{1,2,3,\ldots\}$
${\rm D}_{\rm NP}\in{\rm\Sigma_{1}^{0}}$
$\Omega(2^{n})$
$\p^{X}\neq\np^{X}$
$\p^{A}\neq\np^{A}\iff\p\neq\np$
$\p\neq\np$
$]\}$
${\rm U}_{\rm NP}$
$L\leq_{m}{\rm D}_{\rm NP}$
$x]\}$
$\p^{\mathcal{O}}$
$\min(c,2^{n})$
${\rm D}_{\rm NP}\leq_{m}{\rm D}_{\rm P}$
$z\not\in{\rm D}_{\rm NP}$
$y=\epsilon$
$\p^{\p}$
${\rm U}_{\rm P}$
$\{0,1\}^{n}\cap L(M)$
$A\leq_{T}B$
${\rm D}_{\rm P}$
$U_{\text{\bf P}}$
${\rm PSPACE}$
$x\in L(M)$
$\p^{B}\neq\np^{B}$
$A\in\p$
$\langle M,x\rangle\in{\rm D}_{\rm P}\iff(\exists t>0)[\langle M,x,1^{t}\rangle% \in{\rm U}_{\rm P}]$
${\mathbb{N}}=\{0,1,2,\ldots\}$
$A=L(M^{B})$
$\mathcal{C}^{\mathcal{D}}=\bigcup_{A\in\mathcal{D}}\mathcal{C}^{A}$
$\np$
${\rm U}_{\rm NP}\not\in\p^{{\rm U}_{\rm P}}$
$\np^{\p}$
$f:{\mathbb{N}}\rightarrow{\mathbb{N}}$
$\p=\np$
$f(x)\in{\rm D}_{\rm NP}$
${\rm\Sigma_{0}^{0}}$
${\rm\Sigma_{0}^{0}}^{\mathcal{O}}$
$A\in{\rm\Sigma_{1}^{0}}$
$x\not\in\mathcal{O}$
$\p^{A}=\p$
${\rm U}_{\rm NP}=\{\langle M,1^{n},1^{t}\rangle\mid n\in{\mathbb{N}}\land t\in% {\mathbb{N}^{+}}\land(\exists x\in\{0,1\}^{n})[M$
$\langle M,1^{n}\rangle$
$x\in{\rm HP}$
$\langle M,1^{n}\rangle\in{\rm D}_{\rm NP}\iff(\exists t>0)[\langle M,1^{n},1^{% t}\rangle\in{\rm U}_{\rm NP}]$
$x\}$
$w\in\{0,1\}^{n}$
$\epsilon\notin L(M^{\prime})$
$A\leq_{1\hbox{-}T}B$
${\rm HP}\leq_{m}{\rm D}_{\rm NP}$
$\np^{A}=\np$
$(\forall x)[x\notin{\rm HP}\implies f(x)\notin{\rm D}_{\rm NP}]$
${\rm\Sigma_{1}^{0}}$
${\rm HP}$
$\langle M,w\rangle$
$(\forall x)[x\in{\rm HP}\iff f(x)\in{\rm D}_{\rm NP}]$
$\mathcal{C},\mathcal{D}$
$\epsilon\in L(M^{\prime})$
${\rm D}_{\rm NP}$
${\rm D}_{\rm NP}\leq_{h\hbox{-}T}{\rm D}_{\rm P}$
$L\in\p$
${\rm D}_{\rm P}=\{\langle M,x\rangle\mid M$
${\rm D}_{\rm NP}\leq_{1\hbox{-}T}{\rm D}_{\rm P}$
$c\in{\mathbb{N}^{+}}$
$(S^{\prime}\setminus\{x,y\})\cup\{v^{xy}\}$
$G\setminus X:=G[V(G)\setminus X]$
$V(C_{2})$
$p_{j}\in B$
$H\setminus u$
$\chi(G)\leq k$
$u\in V(H)$
$\{\overline{K_{2}\cup C_{2k+1}}\mid k\in\mathbb{N}\}$