$x=a$
$C_{1},\ldots,C_{k}\cup(C\setminus\{v\})$
$z^{v}$
$\{2,\dots,s-1\}$
$S\cap(A\cup C)$
$H:=G[A\cup B\cup S]$
$z\in V(C)$
$N_{G}(p_{s})\cap V(H)=\{b_{2}\}$
$H\setminus C$
$k\geq\chi(\overline{G})\geq 2$
$H_{1},H_{2}\in\mathcal{M}_{\mathcal{C}}$
$\{p_{0},\dots,p_{s-1}\}$
$(x,c)$
${\cal G}_{1}$
$q_{t}=y$
$q_{2},\dots,q_{t}\in B)$
$G\in\mathcal{G}_{k}$
$S=(S^{\prime}\setminus\{x,y\})\cup\{v^{xy}\}$
$X_{v}$
$\mathcal{M}_{\mathcal{G}_{2}}=\{\overline{K_{2}\cup C_{2k+1}}\mid k\in\mathbb{% N}\}$
$\{a_{i},b_{j}\}$
$\mathcal{O}(n^{\omega}\log n)$
$|V(H)|\geq 2$
$V(C)$
$q_{i},\ldots,q_{t},b_{1},b_{2},a_{2},q_{i}$
$N_{G}(v)\cap V(H)\subseteq A$
$G[N_{G}(v)]$
$G_{A}\setminus S^{\prime}$
$\mathcal{O}(n^{2k})$
$\mathbb{Z}_{k}$
$\{X_{v}\}_{v\in V(H)}$
$2K_{1}\vee K_{2}$
$G[\{a_{1},a_{2},b_{1},b_{2}\}\cup V(Q)]$
$v^{xy}\in S$
$S\cap A$
$(S^{\prime}\setminus\{x,y\})\cup\{v^{xy}\}\subseteq S$
$X_{w}\subseteq V(D)$
$\mathcal{G}_{k}=\mathcal{G}_{\mathcal{C}_{k}}$
$N_{G}[u]=V(G)$
$\mathcal{O}(n^{2.373}(n+m))$
$F\in{\cal F}$
$r_{i}\in C$
$G\setminus x$
$G\setminus N_{G}[v]$
$S^{*}:=(S\setminus\{v^{xy}\})\cup\{x,y\}$
$U:=\{v\in V(H)\mid X_{v}\cap V(C)\neq\emptyset\}$
$N_{A}\cap N_{B}=\emptyset$
$G\setminus(A\cup B)$
$N_{G}(q_{t})\cap V(H)=\{a_{1},b_{1}\}$
$S\subseteq S^{*}$
$K_{\ell+1}\in\mathcal{G}_{\mathcal{C}}$
${\mathcal{C}_{k}}$
$V(H)=A\cup B$
$K_{\ell}$
$N_{G}(v)\cap V(H)=B$
$X_{w}$
$H\setminus a$
$H[A]$
$G^{\prime}[S]$
$G_{B}:=G[B\cup C]$
$S^{*}\subseteq S\cup(V(G)\setminus V(H))$
$G^{\prime}:=G/xy$
$p_{i},\dots,p_{s},b_{1},b_{3},a_{3},a_{2},q_{t},\dots,q_{0},p_{i}$
$q_{2},\dots,q_{t}\in Y$
$a_{1},q_{i}$
$\{2K_{1}\vee H\mid H\in\mathcal{M}_{\mathcal{C}}\}$
$p_{1},\dots,p_{i-1}\in A$
$v^{xy}$
$\mathcal{C}\subseteq\mathcal{G}_{\mathcal{C}}$
$S^{\prime}\setminus\{x,y\}$
$p_{1}=x$
$N_{G}(q_{t})\cap V(H)=\{a_{2}\}$
$G\setminus N_{G}[x]$
$\overline{\overline{G}}=G$
$H[S]\in\mathcal{C}$
$S^{\prime}=S$
$\bigcup_{v\in V(H)}X_{v}\not\subseteq V(H_{2})$
$c\in C\setminus S$
$N_{G}(p_{s})\cap V(H)=\{b_{1}\}$
$\{2K_{1}\vee H\mid H\in\mathcal{M}_{\mathcal{C}_{0}}\}=\{2K_{1}\vee K_{1}\}=\{% P_{3}\}$
$K_{\ell+1}$
$H\in\mathcal{H}$
$A=C\cup\{v\}$
$U=\{v\in V(H)\mid X_{v}\subseteq V(C)\}$
$S_{A}:=S\setminus B$
$2K_{1}\vee 3K_{1}$
$q_{j}\in C$
$p_{i-1},p_{j+1}\in C$
$\{a_{1},b_{1}\}$
$Y\subseteq V(G)\setminus\{x\}$
$\{a,b\}=\{x,y\}$
$\{X_{v}\}_{v\in\{a,b\}\cup V(H)}$
$|V(H)|=2k$
$(x,b)$
$C\cap S$
$\mathcal{O}(|V(G)|^{2})$
$G[a_{j},a_{k},b_{j},b_{k},q_{i},q_{i+1},\dots,q_{t}]$
$2K_{1}$
$a_{i},a_{j}$
$p_{i}\in B$