$G\setminus\{a_{1},b_{1}\}$
$y\in V(F)$
$q_{1}=c$
$v\in V(G)\setminus V(H)$
$G[q_{j},\dots,,q_{t},b_{1},a_{1},a_{2}]$
$N_{G}(q_{t})\cap V(H)=B$
$G[S]=H[S]$
$\omega<2.3728596$
$x\in A$
$G_{i}-v_{i}$
$H\in\mathcal{C}$
$\{2K_{1}\vee H\mid H\in\mathcal{M}_{\mathcal{C}_{1}}\}=\{2K_{1}\vee 2K_{1}\}=% \{C_{4}\}$
$N_{G}(v)\cap V(H)\subseteq B$
$a_{2},a_{3},b_{1}$
$Q=q_{0},\dots,q_{t}$
$H\cong 2K_{1}$
$\mathcal{G}_{k}$
$V(G)\setminus V(H)$
$E(H_{1})\cup E(H_{2})\cup\{v_{1}v_{2}\mid v_{1}\in V(H_{1}),v_{2}\in V(H_{2})\}$
$G[S^{\prime}]\in\mathcal{C}$
$G_{A}:=G[A\cup C]$
$\bigcup_{v\in V(H)}X_{v}\subseteq V(2K_{1})$
$\mathcal{O}(n^{2}(n+m))$
$K_{2,3}$
$p_{1},\dots,p_{i},q_{j},\dots,q_{t}$
$K_{p,q}$
$\mathcal{F}_{\mathcal{C}}$
$S^{\prime}\subseteq S^{*}$
$G\in\mathcal{C}_{k}$
$\mathcal{O}(n^{4})$
$r_{1},\dots,r_{i},c$
$S=V(G)$
$\mathcal{O}(n^{2k+2})$
$S\subseteq A\cup C$
$S^{\prime}\subseteq S\cap(A\cup C)$
$S\subseteq V(G^{\prime})\setminus\{a,b,v^{xy}\}=V(G)\setminus\{a,b,x,y\}$
$A=\{a_{1},a_{2},a_{3}\}$
$G/e$
$p_{s}=c$
$S\subseteq V(G^{\prime})\setminus\{v^{xy}\}=V(G)\setminus\{x,y\}$
$a_{i},a_{j},a_{k}\in A$
$G[a_{1},a_{2},b_{1},b_{2},p_{0},\dots,p_{s}]$
$x,y\in V(G^{\prime})$
$S\subseteq V(G)\setminus\{a,b\}$
$\sum_{x\in X}w(x)$
$S_{v}=\{v,z^{v}\}$
$\mathcal{O}(n^{2+\epsilon})$
$p_{1},\ldots,p_{k}$
$r_{1}=x$
$K_{2,k+1}\notin\mathcal{G}_{k}$
$p_{1},\dots,p_{i-1},p_{j+1},\dots,p_{s}$
$P^{3}$
$p_{1},\dots,p_{i},q_{j+1},\dots,q_{t}$
$\chi(\overline{G})\leq k$
$r_{i},c\in C$
$G[S^{*}]\in\mathcal{C}$
$F\in{\mathcal{C}}$
$\overline{C_{6}}$
$|V(H)|-1$
$G\setminus S^{\prime}$
$S^{*}\cap V(H)\subseteq S$
$G^{\prime}[S]=G[S]$
$\overline{K_{2}\cup C_{2k+1}}\cong 2K_{1}\vee\overline{C_{2k+1}}$
$S\cap B=\emptyset$
$h_{1},\dots,h_{i}$
$y=b$
$a_{2},q_{j},b_{1}$
$K_{2,k}$
$a,b\in V(G)\setminus S$
$y\in B$
$N_{G}(q_{t})\cap V(H)=\{b_{1}\}$
$\mathcal{M}_{\mathcal{G}_{0}}=\{P_{3}\}$
$\mathcal{O}(n^{3+\epsilon})$
$K_{k-1}$
$\mathcal{O}(n^{2+\epsilon}).$
$p_{i}\in C$
$r_{k}=y$
$K_{2,k+1}$
$V(C_{1})$
$N_{G}[y]\setminus N_{G}[x]$
$p_{s}\in N_{B}$
${\mathcal{C}}$
$N_{G}[x]:=\{x\}\cup N_{G}(x)$
$N_{B}=\emptyset$
$\alpha(G^{*})=\alpha(G)+|E(G)|$
$G[v,a_{i},a_{j},a_{k}]$
$p_{1}\in A$
$G[x_{1},\dots,x_{t}]$
$G^{\prime}\in\mathcal{G}_{\mathcal{C}}$
$K_{\ell}\notin\mathcal{C}$
$V(H)\setminus U$
$G\in\mathcal{C}$
$uw\in E(H)$
$a_{2}\in N_{G}(p_{s})\cap V(H)\subseteq\{a_{2},b_{2}\}$
$G[A\cup B\cup\{q_{0},q_{1}\}]$
$\{a_{i},b_{i}\}$
$|N_{G}(v)\cap V(H)|\geq 2$
$a,b\in V(G^{\prime})\setminus S$
$X=\{x\}$
$E(H_{1})\cup E(H_{2})$