File size: 6,368 Bytes
7cae457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import numpy as np
import pyswarms as ps


def cargo_load_planning_pso_v2(weights, cargo_names, cargo_types_dict, positions, cg_impact, cg_impact_2u, cg_impact_4u,

                               max_positions, options=None, swarmsize=100, maxiter=100):
    """

    使用二进制粒子群优化方法计算货物装载方案,最小化重心的变化量。



    参数:

        weights (list): 每个货物的质量列表。

        cargo_names (list): 每个货物的名称。

        cargo_types_dict (dict): 货物名称和占用的货位数量。

        positions (list): 可用的货位编号。

        cg_impact (list): 每个位置每kg货物对重心index的影响系数。

        cg_impact_2u (list): 两个位置组合的重心影响系数。

        cg_impact_4u (list): 四个位置组合的重心影响系数。

        max_positions (int): 总货位的数量。

        options (dict, optional): PSO算法的配置选项。

        swarmsize (int, optional): 粒子群大小。

        maxiter (int, optional): 最大迭代次数。



    返回:

        best_solution (np.array): 最优装载方案矩阵。

        best_cg_change (float): 最优方案的重心变化量。

    """
    # 将货物类型映射为对应的占用单位数
    cargo_types = [cargo_types_dict[name] for name in cargo_names]

    num_cargos = len(weights)  # 货物数量
    num_positions = len(positions)  # 可用货位数量
    dimension = num_cargos * max_positions  # 每个粒子的维度:货物数量 × 可用货位数量

    # 如果未提供options,使用默认配置
    if options is None:
        options = {'c1': 0.5, 'c2': 0.3, 'w': 0.9}

    # 定义适应度评估函数
    def fitness_function(x):
        """

        计算每个粒子的适应度值。



        参数:

            x (numpy.ndarray): 粒子的位置数组,形状为 (n_particles, dimension)。



        返回:

            numpy.ndarray: 每个粒子的适应度值。

        """
        fitness = np.zeros(x.shape[0])

        for idx, particle in enumerate(x):
            # 将连续位置映射为离散起始位置
            start_positions = []
            penalty = 0
            cg_change = 0.0
            occupied = np.zeros(num_positions, dtype=int)

            for i in range(num_cargos):
                cargo_type = cargo_types[i]
                pos_continuous = particle[i * max_positions:(i + 1) * max_positions]

                # 根据粒子位置值选择最佳货位
                start_pos = np.argmax(pos_continuous)

                # 检查边界
                if start_pos < 0 or start_pos + cargo_type > num_positions:
                    penalty += 1000
                    continue

                # 检查对齐
                if cargo_type == 2 and start_pos % 2 != 0:
                    penalty += 1000
                if cargo_type == 4 and start_pos % 4 != 0:
                    penalty += 1000

                # 检查重叠
                if np.any(occupied[start_pos:start_pos + cargo_type]):
                    penalty += 1000
                else:
                    occupied[start_pos:start_pos + cargo_type] = 1

                start_positions.append(start_pos)

                # 计算重心变化量
                if cargo_type == 1:
                    cg_change += weights[i] * cg_impact[start_pos]
                elif cargo_type == 2:
                    cg_change += weights[i] * cg_impact_2u[start_pos // 2]
                elif cargo_type == 4:
                    cg_change += weights[i] * cg_impact_4u[start_pos // 4]

            fitness[idx] = cg_change + penalty

        return fitness

    # 设置PSO的边界
    # 对于每个货物,起始位置的范围根据货物类型对齐
    lower_bounds = []
    upper_bounds = []
    for i in range(num_cargos):
        cargo_type = cargo_types[i]
        lower_bounds.append([0] * max_positions)
        upper_bounds.append([1] * max_positions)

    bounds = (np.array(lower_bounds), np.array(upper_bounds))

    # 初始化PSO优化器
    optimizer = ps.single.GlobalBestPSO(n_particles=swarmsize, dimensions=dimension, options=options, bounds=bounds)

    # 运行PSO优化
    best_cost, best_pos = optimizer.optimize(fitness_function, iters=maxiter)

    # 将最佳位置映射为离散装载方案
    best_start_positions = []
    penalty = 0
    cg_change = 0.0
    occupied = np.zeros(num_positions, dtype=int)

    for i in range(num_cargos):
        cargo_type = cargo_types[i]
        pos_continuous = best_pos[i * max_positions:(i + 1) * max_positions]

        # 根据粒子位置值选择最佳货位
        start_pos = np.argmax(pos_continuous)

        # 检查边界
        if start_pos < 0 or start_pos + cargo_type > num_positions:
            penalty += 1000
            best_start_positions.append(start_pos)
            continue

        # 检查对齐
        if cargo_type == 2 and start_pos % 2 != 0:
            penalty += 1000
        if cargo_type == 4 and start_pos % 4 != 0:
            penalty += 1000

        # 检查重叠
        if np.any(occupied[start_pos:start_pos + cargo_type]):
            penalty += 1000
        else:
            occupied[start_pos:start_pos + cargo_type] = 1

        best_start_positions.append(start_pos)

        # 计算重心变化量
        if cargo_type == 1:
            cg_change += abs(weights[i] * cg_impact[start_pos])
        elif cargo_type == 2:
            cg_change += abs(weights[i] * cg_impact_2u[start_pos // 2])
        elif cargo_type == 4:
            cg_change += abs(weights[i] * cg_impact_4u[start_pos // 4])

    total_cg_change = cg_change + penalty

    # 构建装载方案矩阵
    best_xij = np.zeros((num_cargos, num_positions), dtype=int)
    for i, start_pos in enumerate(best_start_positions):
        cargo_type = cargo_types[i]
        for k in range(cargo_type):
            pos = start_pos + k
            if pos < num_positions:
                best_xij[i, pos] = 1

    # 检查是否有严重惩罚,判断是否找到可行解
    if total_cg_change >= -999999:
        return best_xij, total_cg_change
    else:
        return [], -1000000


# 示例调用