File size: 6,290 Bytes
7cae457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import numpy as np
from scipy.optimize import linprog


def cargo_load_planning_linear3(weights, cargo_names, cargo_types_dict, positions, cg_impact, cg_impact_2u, cg_impact_4u,

                        max_positions):
    """

    使用整数线性规划方法计算货物装载方案,最小化重心的变化量。



    参数:

        weights (list): 每个货物的质量列表。

        cargo_names (list): 每个货物的名称。

        cargo_types_dict (dict): 货物名称和占用的货位数量。

        positions (list): 可用的货位编号。

        cg_impact (list): 每个位置每kg货物对重心index的影响系数。

        cg_impact_2u (list): 两个位置组合的重心影响系数。

        cg_impact_4u (list): 四个位置组合的重心影响系数。

        max_positions (int): 总货位的数量。



    返回:

        result.x: 最优装载方案矩阵。

    """
    # 将货物类型映射为对应的占用单位数
    cargo_types = [cargo_types_dict[name] for name in cargo_names]

    num_cargos = len(weights)  # 货物数量
    num_positions = len(positions)  # 可用货位数量

    # 决策变量:xij (是否将货物i放置在位置j)
    c = []  # 目标函数系数列表
    for i in range(num_cargos):
        for j in range(num_positions):
            if cargo_types[i] == 1:
                c.append(abs(weights[i] * cg_impact[j]))
            elif cargo_types[i] == 2 and j % 2 == 0 and j < len(cg_impact_2u) * 2:
                c.append(abs(weights[i] * cg_impact_2u[j // 2]))
            elif cargo_types[i] == 4 and j % 4 == 0 and j < len(cg_impact_4u) * 4:
                c.append(abs(weights[i] * cg_impact_4u[j // 4]))
            else:
                c.append(0)  # 不适合的索引默认影响为0

    # 决策变量约束:xij只能是0或1 (整型约束由 linprog 近似处理)
    bounds = [(0, 1) for _ in range(num_cargos * num_positions)]

    # 约束1:每个货物只能装载到一个位置
    A_eq = []
    b_eq = []
    for i in range(num_cargos):
        constraint = [0] * (num_cargos * num_positions)
        for j in range(num_positions):
            constraint[i * num_positions + j] = 1
        A_eq.append(constraint)
        b_eq.append(1)

    # 约束2:每个位置只能装载一个货物
    A_ub = []
    b_ub = []
    for j in range(num_positions):  # 遍历所有位置
        constraint = [0] * (num_cargos * num_positions)
        for i in range(num_cargos):  # 遍历所有货物
            constraint[i * num_positions + j] = 1
        A_ub.append(constraint)
        b_ub.append(1)  # 每个位置最多只能分配一个货物

    # 约束3:占用多个位置的货物
    for i, cargo_type in enumerate(cargo_types):
        if cargo_type == 2:  # 两个连续位置组合
            for j in range(0, num_positions - 1, 2):
                constraint = [0] * (num_cargos * num_positions)
                constraint[i * num_positions + j] = 1
                constraint[i * num_positions + j + 1] = 1
                A_ub.append(constraint)
                b_ub.append(1)
        elif cargo_type == 4:  # 上两个、下两个组合
            for j in range(0, num_positions - 3, 4):
                constraint = [0] * (num_cargos * num_positions)
                constraint[i * num_positions + j] = 1
                constraint[i * num_positions + j + 1] = 1
                constraint[i * num_positions + j + 2] = 1
                constraint[i * num_positions + j + 3] = 1
                A_ub.append(constraint)
                b_ub.append(1)

    # 转换为numpy数组
    A_eq = np.array(A_eq)
    b_eq = np.array(b_eq)
    A_ub = np.array(A_ub)
    b_ub = np.array(b_ub)
    c = np.array(c)

    # 求解线性规划问题
    result = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq, bounds=bounds, method='highs-ipm')

    if result.success:
        # print("成功找到最优装载方案!")
        solution = result.x.reshape((num_cargos, num_positions))
        # print("装载方案矩阵:")
        # print(solution)

        # 计算最终重心变化
        cg_change = 0
        for i in range(num_cargos):
            for j in range(num_positions):
                if cargo_types[i] == 1:
                    cg_change += solution[i, j] * weights[i] * cg_impact[j]
                elif cargo_types[i] == 2 and j % 2 == 0 and j < len(cg_impact_2u) * 2:
                    cg_change += solution[i, j] * weights[i] * cg_impact_2u[j // 2]
                elif cargo_types[i] == 4 and j % 4 == 0 and j < len(cg_impact_4u) * 4:
                    cg_change += solution[i, j] * weights[i] * cg_impact_4u[j // 4]
        # print(f"重心的变化量: {cg_change:.2f}")
        return result,cg_change
        # 输出实际分布
        # print("货物实际分布:")
        # for i in range(num_cargos):
        #     assigned_positions = []
        #     for j in range(num_positions):
        #         if solution[i, j] > 0.5:  # 判断位置是否被分配
        #             assigned_positions.append(j)
        #     print(f"货物 {cargo_names[i]} (占 {cargo_types[i]} 单位): 放置位置 -> {assigned_positions}")
    else:
        result = []
        return result,-1000000




# 示例输入
# def main():
#     weights = [500, 800, 1200, 300, 700, 1000, 600, 900]  # 每个货物的质量
#     cargo_names = ['LD3', 'LD3', 'PLA', 'LD3', 'P6P', 'PLA', 'LD3', 'BULK']  # 货物名称
#     cargo_types_dict = {"LD3": 1, "PLA": 2, "P6P": 4, "BULK": 1}  # 货物占位关系
#     positions = list(range(44))  # 44个货位编号
#     cg_impact = [i * 0.1 for i in range(44)]  # 每kg货物对重心index的影响系数 (单个位置)
#     cg_impact_2u = [i * 0.08 for i in range(22)]  # 两个位置组合的影响系数
#     cg_impact_4u = [i * 0.05 for i in range(11)]  # 四个位置组合的影响系数
#     max_positions = 44  # 总货位数量
#
#     result = cargo_load_planning(weights, cargo_names, cargo_types_dict, positions, cg_impact, cg_impact_2u,
#                                  cg_impact_4u, max_positions)
#
#
# if __name__ == "__main__":
#     main()