File size: 6,281 Bytes
7cae457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import numpy as np
import pulp

def cargo_load_planning_mip(weights, cargo_names, cargo_types_dict, positions, cg_impact, cg_impact_2u, cg_impact_4u,

                            max_positions):
    """

    使用混合整数规划方法计算货物装载方案,最小化重心的变化量。



    参数:

        weights (list): 每个货物的质量列表。

        cargo_names (list): 每个货物的名称。

        cargo_types_dict (dict): 货物名称和占用的货位数量。

        positions (list): 可用的货位编号。

        cg_impact (list): 每个位置每kg货物对重心index的影响系数。

        cg_impact_2u (list): 两个位置组合的重心影响系数。

        cg_impact_4u (list): 四个位置组合的重心影响系数。

        max_positions (int): 总货位的数量。



    返回:

        result (pulp.LpStatus): 求解状态。

        cg_change (float): 最优解的重心变化量。

        solution_matrix (np.ndarray): 最优装载方案矩阵。

    """
    # 将货物类型映射为对应的占用单位数
    cargo_types = [cargo_types_dict[name] for name in cargo_names]

    num_cargos = len(weights)        # 货物数量
    num_positions = len(positions)   # 可用货位数量

    # 创建优化问题实例
    prob = pulp.LpProblem("Cargo_Load_Planning", pulp.LpMinimize)

    # 创建决策变量 x_ij (是否将货物i放置在位置j)
    # 使用字典键 (i,j) 来标识变量
    x = pulp.LpVariable.dicts("x",
                              ((i, j) for i in range(num_cargos) for j in range(num_positions)),
                              cat='Binary')

    # 定义目标函数:最小化重心的变化量
    objective_terms = []
    for i in range(num_cargos):
        for j in range(num_positions):
            if cargo_types[i] == 1:
                impact = abs(weights[i] * cg_impact[j])
            elif cargo_types[i] == 2 and j % 2 == 0 and j < len(cg_impact_2u) * 2:
                impact = abs(weights[i] * cg_impact_2u[j // 2])
            elif cargo_types[i] == 4 and j % 4 == 0 and j < len(cg_impact_4u) * 4:
                impact = abs(weights[i] * cg_impact_4u[j // 4])
            else:
                impact = 0
            objective_terms.append(impact * x[i, j])

    prob += pulp.lpSum(objective_terms), "Total_CG_Change"

    # 约束1:每个货物只能装载到一个位置
    for i in range(num_cargos):
        prob += pulp.lpSum([x[i, j] for j in range(num_positions)]) == 1, f"Cargo_{i}_Single_Position"

    # 约束2:每个位置只能装载一个货物
    for j in range(num_positions):
        prob += pulp.lpSum([x[i, j] for i in range(num_cargos)]) <= 1, f"Position_{j}_Single_Cargo"

    # 约束3:占用多个位置的货物
    for i, cargo_type in enumerate(cargo_types):
        if cargo_type == 2:  # 两个连续位置组合
            for j in range(0, num_positions - 1, 2):
                prob += x[i, j] + x[i, j + 1] <= 1, f"Cargo_{i}_Type2_Position_{j}_{j+1}"
        elif cargo_type == 4:  # 四个连续位置组合
            for j in range(0, num_positions - 3, 4):
                prob += x[i, j] + x[i, j + 1] + x[i, j + 2] + x[i, j + 3] <= 1, f"Cargo_{i}_Type4_Position_{j}_{j+3}"

    # 求解问题
    solver = pulp.PULP_CBC_CMD(msg=False)  # 使用默认的CBC求解器,不显示求解过程
    prob.solve(solver)

    # 检查求解状态
    if pulp.LpStatus[prob.status] == 'Optimal':
        # 构建装载方案矩阵
        solution = np.zeros((num_cargos, num_positions))
        for i in range(num_cargos):
            for j in range(num_positions):
                var_value = pulp.value(x[i, j])
                if var_value is not None and var_value > 0.5:
                    solution[i, j] = 1

        # 计算最终重心变化
        cg_change = 0.0
        for i in range(num_cargos):
            for j in range(num_positions):
                if solution[i, j] == 1:
                    if cargo_types[i] == 1:
                        cg_change += weights[i] * cg_impact[j]
                    elif cargo_types[i] == 2 and j % 2 == 0 and j < len(cg_impact_2u) * 2:
                        cg_change += weights[i] * cg_impact_2u[j // 2]
                    elif cargo_types[i] == 4 and j % 4 == 0 and j < len(cg_impact_4u) * 4:
                        cg_change += weights[i] * cg_impact_4u[j // 4]

        return solution, cg_change
    else:
        # 若求解失败,则返回空结果和错误标志
        return [], -1000000

# 示例输入和调用
# def main():
#     weights = [500, 800, 1200, 300, 700, 1000, 600, 900]  # 每个货物的质量
#     cargo_names = ['LD3', 'LD3', 'PLA', 'LD3', 'P6P', 'PLA', 'LD3', 'BULK']  # 货物名称
#     cargo_types_dict = {"LD3": 1, "PLA": 2, "P6P": 4, "BULK": 1}  # 货物占位关系
#     positions = list(range(44))  # 44个货位编号
#     cg_impact = [i * 0.1 for i in range(44)]  # 每kg货物对重心index的影响系数 (单个位置)
#     cg_impact_2u = [i * 0.08 for i in range(22)]  # 两个位置组合的影响系数
#     cg_impact_4u = [i * 0.05 for i in range(11)]  # 四个位置组合的影响系数
#     max_positions = 44  # 总货位数量
#
#     status, cg_change, solution = cargo_load_planning_mip(
#         weights, cargo_names, cargo_types_dict, positions, cg_impact, cg_impact_2u, cg_impact_4u, max_positions
#     )
#
#     if status == 'Optimal':
#         print("成功找到最优装载方案!")
#         print("装载方案矩阵:")
#         print(solution)
#
#         print(f"重心的变化量: {cg_change:.2f}")
#
#         # 输出实际分布
#         for i in range(len(weights)):
#             assigned_positions = []
#             for j in range(len(positions)):
#                 if solution[i, j] > 0.5:  # 判断位置是否被分配
#                     assigned_positions.append(j)
#             print(f"货物 {cargo_names[i]} (占 {cargo_types_dict[cargo_names[i]]} 单位): 放置位置 -> {assigned_positions}")
#     else:
#         print("未能找到可行解。")
#         print(f"求解状态: {status}")
#
# if __name__ == "__main__":
#     main()